

LATSEST MCQS FROM MIDTERM PAPERS

10 MAY 2011

MC100401285 <u>moaaz.pk@gmail.com</u> Moaaz siddiq

MTH202 Discrete Mathematics

Question No. 1: If p= It	t is raining q = She will g	o to college	vustudypastpapers.com		
"It is raining and she will not go to college" will be denoted by					
$p \wedge \sim q$	$p \wedge q$		$ p \wedge q $		
Question No. 2:					
The negation of "Today is Frida" Today is Saturday		Today is Thurs	day None of given		
Question No. 3: The converse of the conditiona $q \rightarrow p$	I statement $p \rightarrow q$ is $q \rightarrow p$	~ p →~ q	None of these		
Question No. 4: Contra-positive of given staten I will not take an umb raining. It is not raining or I will	rella if it is not raining. (P	Pg 19)	I will take an umbrella if i	t is	
Question No. 5: A statement is also referred to Proposition (pg 4)	as a Conclusion	Order	☐ None of the	se	
Question No. 6: The statement "It is not raining If roads are dry then it is Roads are dry if and on the statement of the st	not raining.	None of these.	valent to not raining then roads are d	lry.	
Question No. 7: The statement $\sim (\sim p) = p$ Des Commutative Law	scribes Implication Laws	Double negat	ive law Equivalenc	ce	
Question No. 8: An arrangement of rows and columns that specifies the truth value of a compound proposition for all possible truth values of its constituent propositions is called					
Truth Table	Venn diagram	False Table	None of the	ese	
Question No. 9: An argument is if the co	nclusion is true when all t	the premises are true.			
Valid (Pg 25) these	Invalid	False	Non	e of	
Question No. 10: The row in the truth table of an argument where all premises are true is called					
Valid row these	Invalid row	Critical row	(Pg 27) Nor	ne of	

Question No. 11: The statement $p \to q \equiv (p \land \sim q) \to c$ describes Commutative Law Implication Laws Exportation Law Reductio ad absurdum
Question No. 12:
$p \leftrightarrow q$ is logically equivalent to $(p \to q) \land (q \to p)$
Question No. 13: According to biconditional 1+1=3 if and only if sky is yellow. TRUE (Pg 20) FALSE
Question No. 14: A statement that is always true regardless of the truth values of the statement variables called Tautology. TRUE (Pg 10) FALSE
Question No. 15:
If p and q are statement variables, then the conjunction of p and q is "p and q" denoted as " $p \lor q$ ".
TRUE FALSE
Question No: 3 (Marks: 1) - Please choose one For two sets A,B
$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ is called
 Distributivity of intersection over union Distributivity of union over intersection None of these Distributivity Law
Question No: 6 (Marks: 1) - Please choose one Check whether
36 36 Modulus5 = 1 remainder
$33 \equiv 3 \pmod{10}$ $33 \mod u = 3 \text{ remainder}$
 ▶ Both are equivalent ▶ Second one is equivalent but first one is not ▶ First one is equivalent but second one is not
Question No: 7 (Marks: 1) - Please choose one A binary relation R is called Partial order relation if
 ▶ It is Reflexive and transitive ▶ It is symmetric and transitive ▶ It is reflexive, symmetric and transitive ▶ It is reflexive, anti-symmetric and transitive (Pg 92)
Question No: 8 (Marks: 1) - Please choose one The order pairs which are not present in a relation, must be present in
 ▶ Inverse of that relation ▶ Composition of relations ▶ Complementary relation of that relation (pg 97)

Question No: 9 (Marks: 1) - Please choose one

The relation as a set of ordered pairs as shown in figure is

- $\blacktriangleright \{(a,b),(b,a),(b,d),(c,d)\}$
- $\blacktriangleright \{(a,b),(b,a),(a,c),(b,a),(c,c),(c,d)\}$
- \blacktriangleright {(a,b), (a,c), (b,a),(b,d), (c,c),(c,d)}
- \blacktriangleright {(a,b), (a,c), (b,a),(b,d),(c,d)}

Question No: 10 (Marks: 1) - Please choose one

A circuit with two input signals and one output signal is called

- ► NOT-gate (or inverter)
 - ► AND- gate
 - ► None of these

Question No: 11 (Marks: 1) - Please choose one

If f(x)=2x+1 then its inverse =

- **▶** x-1
- $\blacktriangleright \frac{1}{2}(x-1)$
- $\rightarrow x^2 + 2$

$$f(x) = 2x+1$$

$$y = 2x + 1$$

$$x = \frac{y-1}{x}$$

$$f\left(x\right)^{-1} = \frac{y-1}{2}$$

Question No: 12 (Marks: 1) - Please choose one

Null set is denoted by

- ▶ (phi) or { }. (pg 39)
- \triangleright A
- ► None of these

Question No: 13 (Marks: 1) - Please choose one

The total number of elements in a set is called

- ► Strength
- ► Cardinality (pg 141)
- ► Finite

Question No: 14 (Marks: 1) - Please choose one

If f(x)=x+1 and $g(x)=\frac{-2x^2+1}{2x^2-x}$ then $(2f-1g)x=\frac{2x^2-x}{2x^2+2x+1}$ =(2f-1g)x

$$= (2f - 1g)x$$

$$= 2f(x) - g(x)$$

$$= 2.(x+1) - (-2x^2 + 1)$$

$$= 2x + 2 + 2x^2 - 1$$

 $=2x^2+2x+1$

Question No: 15 (Marks: 1) - Please choose one

 $a_0 = 1, a_1 = -2 \text{ and } a_2 = 3$ then $\sum_{i=0}^{2} a_i = 0$

- **>** -6
- **>** 2
- ▶ 8

Question No: 16 (Marks: 1) - Please choose one

Which of the given statement is incorrect?

- ▶ The process of defining an object in terms of smaller versions of itself is called recursion. (Pg 159)
- ► A recursive definition has two parts: Base and Recursion.
- ► Functions cannot be defined recursively (Pg 159)
- ► Sets can be defined recursively. (Pg 165)

Question No: 17 (Marks: 1) - Please choose one

The operations of intersection and union on sets are commutative

- **►** True (Pg 42)
- ► False
- ▶ Depends on the sets given

Question No: 18 (Marks: 1) - Please choose one

The power set of a set A is the set of all subsets of A, denoted P(A).

- ► False
- ► True (Pg 68)

Question No: 19 (Marks: 1) - Please choose one

What is the output state of an OR gate if the inputs are 0 and 1?

- **▶** 0
- **▶** 1
- **>** 2
- **▶** 3

Question No: 20 (Marks: 1) - Please choose one

The product of the positive integers from 1 to n is called

- ► Multiplication
- n factorial
- ► Geometric sequence

Question No: 6 (Marks: 1) - Please choose one

Let $A = \{1, 2, 3, 4\}$ and $R = \{(1, 1), (2, 2), (3, 3), (4,4)\}$ then

```
► R is symmetric.
    ► R is anti symmetric.
    ► R is transitive.
    ► R is reflexive.
    ► All given options are true
Question No: 7 (Marks: 1) - Please choose one
The inverse of given relation
R = \{(1,1),(1,2),(1,4),(3,4),(4,1)\} is
    ► {(1,1),(2,1),(4,1),(2,3)}
    ► {(1,1),(1,2),(4,1),(4,3),(1,4)}
    \blacktriangleright {(1,1),(2,1),(4,1),(4,3),(1,4)} (Pg 95)
Question No: 11 (Marks: 1) - Please choose one
        (A \cap B)^c = (A^c \cap B^c)
     ► True
     ► False
Question No: 13 (Marks: 1) - Please choose one
 Let g be the functions defined by
g(x)=3x+2 then gog(x)=
     > 9x^2 + 4 
    ► 6x+4
    \triangleright 9x+8
g(g(x)) = g(3x+2)
=3(3x+2)+2
=9x+6+2
=9x + 8
Question No: 16 (Marks: 1) - Please choose one
The Common fraction for the recurring decimal 0.81 is
        81
       100
        81
        98
(Pg 157)
Question No: 17 (Marks: 1) - Please choose one
 A collection of rules indicating how to form new set objects from those already known to be in the set is called
    ► Base
    ► Restriction
   ► Recursion (Pg159)
Question No: 19 (Marks: 1) - Please choose one
The statement of the form p^{\vee} \sim p is:
  ► Tautology (Pg 10)
    ► Contradiction
    ► Fallacy
Question No: 20 (Marks: 1) - Please choose one
Let A,B,C be the subsets of a universal set U.
      (A \cup B) \cup C
                   is equal to:
Then
  A \cap (B \cup C)
```

```
A \cup (B \cap C)
\triangleright

ightharpoonup A \cup (B \cup C)
Associative Law
Question: If R = \{(a, a), (b, b), (c, c)\} is a relation on the set A = \{a, b, c\} Then R is
    Symmetric only.
    > Symmetric and reflexive only.
    > Reflexive only.
    > Equivalence relation. (Pg 85)
Question: The negation of the implication "If P is a square then P is a rectangle" is
      If P is not a square then P is not a rectangle
    ➤ P is not a square and P is a rectangle
    P is a square and P is not a rectangle.
    > None of the above
 Question: Identify the false statement
    \geq 0 \in \emptyset
    \triangleright \{\emptyset\}\{\emptyset\}\subseteq
   \triangleright If A and B are two sets A B and BA then A = B. ⊆
    > Two sets are disjoint if their intersection is empty set.
    \rightarrow A \BoxA = U
Question: Let A be a set containing 3 elements then the total number of relations from A to A is
    > 2^9
    ≻ n*n
    > 2n
Question: Let A = \{1,2,3\} and B = \{2,3,4,5\} then
    \triangleright A = B.
    A is a subset of B.
    ➤ A is improper subset of B.
    \triangleright Both 2 and 3.
Question: Which of the following is not a Proposition?
    > x >11.
    > Sun rounds about the Earth
      11+7=18
    None of above.
Question: F = \{x \in R \mid x131 + 29 \times 12 - 3 = 0\}
    finite
    > infinite
    (c) none of above
Question: Let A has the same cardinality as B if and only if ,there is a----- correspondence
between sets A and B
    > one-one
    > onto
    (c) Both (a) and (b) (Pg 141)
Question: Let A=\{0,1,2,3,4,5\} and we define functions f: A \to A and then g: A \to A
f (3)=3, f (4)=2, f (5)=2, f (2)=5, f (1)=2
g (1)=4, g (3)=3, g (5)=3, g (2)=1
then fog(5) and gof(2)

ightharpoonup (a) fog(5) = gof(2)
    \triangleright (b) fog(5) gof(2)
    \triangleright (c) fog(3) = gof(1)
    (d) None of the above
```

fog(5) = fg(5)= f(3) = 3gof(2) = gf(2)= g(5) = 3**Question: Choose the correct answer:** If f and g are two one-to-one functions, then their composition of gof is > onto > one-to-one (Pg 134) ➤ (c) bijective Question: If 1=1 then 2=2, the conditional statement is > True > False > None of other. If $1^3 + 2^3 + 3^3 + ... + n^3 =$ Then, (Pg 157) n(n+1)(2n+1)n(n+1)None of these Question: A set Z has n elements. How many functions are from Z to Z? > 2_n \triangleright n×n > nn > None of the other **Question: Compute the summation** $\sum_{i=0}^{2} \left(i^2 + 2 \right)$ > 5 > 3

None of these.

> None of the other

Question: If p=T,q=T,r=F

None of these.

 $((\sim p) \land r) \rightarrow (q \land r))$

S={1}S={-1}S={-1,1}

Then

Must be

→ F

→ T

→ qVr

Question: Let $S = \{n \in \mathbb{Z} / n = (-1)k, \text{ for some integer } k\}$

Question: If $A=\{a,b,c,d\}$ then the number of elements of power set P(A) are

- > 2
- ≥ 2⁵
- \geq 2⁶
- > 27

Question: Consider the relation $R=\{(1,1),(1,2),(1,4),(2,1),(2,2),(3,3),(4,4)\}$ on $A=\{1,2,3,4\}$ is

- **▶** Symmetric
- **►** Transitive
- **▶** Reflexive
- ► All of these

Question: The function defined by the following diagram is $f: X \rightarrow Y$

- ► One-to-one
- **▶** Onto
- **▶** Both one-to-one and onto
- None of these

Question: $1,10,10^2$, 10^3 , 10^4 , 10^5 , 10^6 , 10^7 ,.....

is

- ► Arithmetic series (Pg 145)
- ► Geometric series
- ► Arithmetic sequence
- ► Geometric sequence

Question:

Negations for the given statement "The train is late or my watch is fast" is

- ► The train is not late or my watch is not fast.
- ► The train is not late and my watch is not fast.
- ► The train is not late or my watch is fast
- None of these.

Question:

Let R be the relation from $A=\{a_1,a_2,a_3\}$ (Elements of A are ordered by their subscript) to itself given by the matrix representation . Then R is

$$\begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

- ► Reflexive and Symmetric.
- ➤ Symmetric and Transitive.
- Irreflexive and Symmetric.
- ► Irreflexive and Anti- Symmetric.

If out of 35 people each person like Discrete Mathematics or Data Structures ,25 like Discrete Mathematics, and 20 like Data structures then the number of people who like

both Discret	e and Data Structures is
▶	
•	5
> 1	0
)	None of these.
Question: Inverse of a True (Pg 124) False	function may not be a function
Question No: 1 (M	arks: 1) - Please choose one
The inverse of given relat	on $R = \{(1,1),(1,2),(1,4),(3,4),(4,1)\}$ is
► {(1,1),(2,1),(4,1), ► {(1,1),(1,2),(4,1), ► {(1,1),(2,1),(4,1),	4,3),(1,4)}
Question No: 2 (M Symmetric and antisy	arks: 1) - Please choose one nmetric are
Negative of eacBoth are same	
► Not negative o	reach other (Pg 90)
Question No: 3 (M Let $A = \{a, b, c\}$ and	arks: 1) - Please choose one
$R = \{(a, c), (b, b), (c, a)\}$	} be a relation on A. Is R
TransitiveReflexive	

▶ Symmetric

► 1 (Pg 99)

▶ 0

TrueFalse

 $x^2 - 1$ $2x^2 - 1$ $2x^3 - 1$

► Transitive and Reflexive

Question: In Boolean addition 1+1=

Question No: 8 (Marks: 1) - Please choose one The same element can never appear twice in a set

Question No: 9 (Marks: 1) - Please choose one

If f(x)=2x+1, $g(x)=x^2-1$ then fg(x)=

```
fg(x) = f(x^{2} - 1)
f(x^{2} - 1) = 2(x^{2} - 1) + 1
= 2x^{2} - 2 + 1
= 2x^{2} - 1
```

Question No: 13 (Marks: 1) - Please choose one

If a set contains exactly m distinct elements where m denotes some non negative integer then the set is .

- **▶** Finite
- **▶** Infinite
- ► None of these

Question No: 14 (Marks: 1) - Please choose one If f(4) = 1 and g(1) = 4 then fog(1) =

- **▶** 3
- **▶** 1
- **>** 4

$$fog(1) = fg(1)$$

$$= f(4) = 1$$

Question No: 15 (Marks: 1) - Please choose one If $(A \cup B) = A$, then $(A \cap B) = B$

- **►** True
- ► False
- ► Cannot be determined

Question No: 16 (Marks: 1) - Please choose one The total number of elements in a set is called

- ► Strength
- **►** Cardinality
- ► Finite

Question No: 17 (Marks: 1) - Please choose one If f(x) = x and g(x)=-2x then (f+g)x =

- **▶** 3x
- $ightharpoonup 2x^2$
- **▶** -x

Question No: 19 (Marks: 1) - Please choose one

Which term of the sequence 4,1,-2,... is -77

- **26**
- **▶** 27
- **▶** 28

Question No: 20 (Marks: 1) - Please choose one

If a set A has 5 elements then power set of A. P(S) contains elements. Which are?

- \sim 5⁵
- $\sim 2^n$
- **■** 4⁵
- \triangleright 2⁵

Question No: 13 $\,$ (Marks: 1) - Please choose one Let g be the functions defined by

$$g(x)=3x+2$$
 then $gog(x)=$

- $ightharpoonup 9x^2 + 4$
- ► 6x+4
- **▶** 9x+8

- =3(3x+2)+2
- =9x+6+2
- =9x+8