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Lecture No.1   Logic 

Course Objective: 
 
1.Express statements with the precision of formal logic  
2.Analyze arguments to test their validity 
3.Apply the basic properties and operations related to sets  
4.Apply to sets the basic properties and operations related to relations and functions 
5.Define terms recursively 
6.Prove a formula using mathematical induction 
7.Prove statements using direct and indirect methods 
8.Compute probability of simple and conditional events 
9.Identify and use the formulas of combinatorics in different problems 
10.Illustrate the basic definitions of graph theory and properties of graphs  
11.Relate each major topic in Discrete Mathematics to an application area in computing  
 
1.Recommended Books:   
 
1.Discrete Mathematics with Applications (second edition) by Susanna S. Epp 
2.Discrete Mathematics and Its Applications (fourth edition) by Kenneth H. Rosen 
1.Discrete Mathematics by Ross and Wright 
 
MAIN TOPICS: 
 
1. Logic 
2. Sets & Operations on sets 
3. Relations & Their Properties 
4. Functions 
5. Sequences & Series 
6. Recurrence Relations 
7.  Mathematical Induction 
8. Loop Invariants 
9. Loop Invariants 
10. Combinatorics 
11. Probability 
12. Graphs and Trees 
 
 
 
 
 
 
 
 
 
 
 
 

          Continuous 
Discrete 
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Set of Integers: 
•  •   •  •  •           •            
3 -2 -1 0 1 2 
 
Set of Real Numbers: 
 
•  •  •  •  •  •  •  
-3 -2 -1 0 1 2           3 
 
 
What is Discrete Mathematics? 
 
Discrete Mathematics concerns processes that consist of a sequence of individual steps. 
 
LOGIC: 
 

Logic is the study of the principles and methods that distinguish between a 
valid and an invalid argument.  
 
SIMPLE STATEMENT: 
A statement is a declarative sentence that is either true or false but not both. 
A statement is also referred to as a proposition 
 
EXAMPLES: 
 

a. 2+2 = 4,  
b. It is Sunday today 

 
If a proposition is true, we say that it has a truth value of "true”.  
If a proposition is false, its truth value is "false".  
The truth values “true” and “false” are, respectively, denoted by the letters T and F. 
 
EXAMPLES: 
            Propositions 

1) Grass is green. 
2) 4 + 2 = 6 
3) 4 + 2 = 7 
4) There are four fingers in a hand. 

 
Rule: 
If the sentence is preceded by other sentences that make the pronoun or variable reference 
clear, then the sentence is a statement. 
 
Example: 
x = 1 
x > 2 
“x > 2” is a statement with truth-value 
FALSE. 
 

      Not Propositions 
1) Close the door. 
2) x is greater than 2. 
3) He is very rich 

 

Example 
Bill Gates is an American 
He is very rich 
“He is very rich” is a statement with truth-
value TRUE.
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UNDERSTANDING STATEMENTS 
 

1) x + 2 is positive.   Not a statement 
2) May I come in?   Not a statement 
3) Logic is interesting.                 A statement 
4) It is hot today.              A statement 
5) -1 > 0               A statement 
6) x + y = 12              Not a statement 

 
COMPOUND STATEMENT: 
Simple statements could be used to build a compound statement. 
 
LOGICAL CONNECTIVES 
 
EXAMPLES:       
 
1.    “3 + 2 = 5” and “Lahore is a city in Pakistan”  
2.    “The grass is green” or “ It is hot today” 
3.    “Discrete Mathematics is not difficult to me” 
 
AND, OR, NOT are called LOGICAL CONNECTIVES. 
 
SYMBOLIC REPRESENTATION 
Statements are symbolically represented by letters such as p, q, r,... 
 
EXAMPLES: 
 
 p = “Islamabad is the capital of Pakistan” 
 q = “17 is divisible by 3” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Double arrow ↔ if and only if Biconditional 

Arrow →if…then… Conditional 

Vel ∨  or Disjunction 

Hat ∧  and Conjunction 

Tilde ~ not Negation 

CALLED SYMBOLS MEANINGS CONNECTIVE 
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EXAMPLES 
 
 p = “Islamabad is the capital of Pakistan” 
 q = “17 is divisible by 3” 
p ∧ q = “Islamabad is the capital of Pakistan and 17 is divisible by 3” 
p ∨ q = “Islamabad is the capital of Pakistan or 17 is divisible by 3” 
~p = “It is not the case that Islamabad is the capital of Pakistan”  
or simply   “Islamabad is not the capital of Pakistan” 

 
TRANSLATING FROM ENGLISH TO SYMBOLS 
 
Let  p = “It is hot”, and q = “ It is sunny” 
 
SENTENCE     SYMBOLIC FORM 
1.It is not hot.               ~ p 
2.It is hot and sunny.     p ∧q 
3.It is hot or sunny.     p ∨ q  
4.It is not hot but sunny.            ~ p ∧q 
5.It is neither hot nor sunny.            ~ p ∧ ~ q 
 
EXAMPLE 
  
Let h = “Zia is healthy”    
 w = “Zia is wealthy” 
 s = “Zia is wise” 
Translate the compound statements to symbolic form: 

1) Zia is healthy and wealthy but not wise.                  (h ∧ w) ∧ (~ s) 
2) Zia is not wealthy but he is healthy and wise.          ~ w ∧ (h ∧ s) 
3) Zia is neither healthy, wealthy nor wise.                  ~ h ∧ ~ w ∧ ~ s 

 
TRANSLATING FROM SYMBOLS TO ENGLISH: 
 
Let m = “Ali is good in Mathematics” 
 c = “Ali is a Computer Science student” 
 
Translate the following statement forms into plain English: 
 

1) ~ c  Ali is not a Computer Science student 
2) c∨ m  Ali is a Computer Science student or good in Maths. 
3) m ∧ ~ c  Ali is good in Maths but not a Computer Science student 

 
A convenient method for analyzing a compound statement is to make a truth 
 table for it. 
 
Truth Table 
A truth table specifies the truth value of a compound proposition for all 
 possible truth values of its constituent propositions.  
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NEGATION (~): 
If p is a statement variable, then negation of p, “not p”, is denoted as “~p” 
It has opposite truth value from p i.e., if p is true, then ~ p is false; if p is false, then ~ p is 
true.  
 
TRUTH TABLE FOR ~ p 
  
 
 
 
 
 
 
 
 
 
 
CONJUNCTION (∧): 
If p and q are statements, then the conjunction of p and q is “p and q”, denoted as 
 “p ∧ q”. 
 
Remarks 

o p ∧ q  is true only when both p and q are true.  
o If either p or q is false, or both are false, then p ∧ q is false.  

 
TRUTH TABLE FOR p ∧ q 
 
 
 
 
 
 
 
 
 
 
 
 
 
DISJUNCTION (∨) or INCLUSIVE OR 
 
If p & q are statements, then the disjunction of p and  q is “p or q”, denoted as 
 “p ∨ q”.  
 
Remarks: 

o p ∨ q is true when at least one of p or q is true. 
o p ∨ q is false only when both p and q are false.  

 
 

T F 

F T 

~ p p 

F F F 

F T F 

F F T 

T T T 

p ∧ q q p 
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TRUTH TABLE FOR p ∨ q 
 
 
 
 
 
 
 
 
 
 
 
 
Note it  that in the table F is only in that row where both p and q have F and all other 
values are T. Thus for finding out the truth values for the disjunction of  two statements 
we will only first search out where the both statements are false and write down the F in 
the corresponding row in the column of p ∨ q and in all other rows we will write T in the 
column of p ∨ q.  
 
Remark: 
               Note that  for Conjunction of two statements we find the T in both the 
statements, But in disjunction we find F in both the statements. In other words, we will 
fill T in the first row of conjunction and F in the last row of disjunction.   
 
SUMMARY 

1. What is a statement? 
2. How a compound statement is formed. 
3. Logical connectives (negation, conjunction, disjunction). 
4. How to construct a truth table for a statement form. 

 

F F F 

T T F 
TFT 

T T T 

p ∨ q q p 



2-Truth Tables      VU                      
 

 
© Copyright Virtual University of Pakistan 

 
 

Lecture No.2   Truth Tables 
 
Truth Tables for: 
 
1.       ~ p ∧ q 
2.       ~ p ∧ (q ∨ ~ r) 
3.       (p∨q) ∧ ~ (p∧q) 
 
Truth table for the statement form  ~ p ∧ q  
 
 
 
 
 
 
 
    
 
 
Truth table for  ~ p ∧ (q ∨ ~ r) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Truth table for (p∨q) ∧ ~ (p∧q) 
 
 
 
 
 
 
 
 
 

F T F F 

T T T F 

F F F T 

F F T T 
~ p ∧ q~p q p 

T T T T F F F 

F T F F  T F F 

T T T T F T F 

T T T F T T F 

F F T T F F T 

F F F F T F T 

F F T T F T T 

F F T F T T T 

~ p ∧ (q ∨ ~ r) ~ p q ∨ ~ r ~ r r q p 

F T F F F F 

T T F T T F 

T T F T F T 

F F T T T T 
(p∨q) ∧ ~ (p∧q) ~ (p∧q)p∧qp∨q q p 
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USAGE OF “OR” IN ENGLISH 
In English language the word OR is sometimes used in an inclusive sense (p or q or 
both). 
 
Example: I shall buy a pen or a book. 
In the above statement, if you buy a pen or a book in both cases the statement is true and 
if you buy both pen and book, then statement is again true. Thus we say in the above 
statement we use or in inclusive sense.   
 
The word OR is sometimes used in an exclusive sense (p or q but not both).  As in the 
below statement 
 
Example: Tomorrow at 9, I’ll be in Lahore or Islamabad. 
Now in above statement we are using OR in exclusive sense because if both the 
statements are true, then we have F for the statement. 
 
While defining a disjunction the word OR is used in its inclusive sense. Therefore, the 
symbol ∨ means the “inclusive OR” 
 
EXCLUSIVE OR: 
When OR is used in its exclusive sense, The statement “p or q” means “p or q but not 
both” or “p or q and not p and q” which translates into symbols as (p ∨ q) ∧ ~ (p ∧ q) 
It is abbreviated as p ⊕ q or  p XOR q 
 

TRUTH TABLE FOR EXCLUSIVE OR: 
 
 
 
 
 
 
 
 
 
 
 
TRUTH TABLE FOR (p∨q) ∧ ~ (p ∧ q) 
 

p q p∨q p∧q ~ (p ∧ q) (p∨q) ∧ ~ (p ∧ q) 

T T T T F F 
T F T F T T 

F T T F T T 
F F F F T F 

 
 
 
 

F F F 

T T F 
TFT 

F T T 

p ⊕ q q p 
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Note: Basically  
             p ⊕ q ≡ (p ∧ ∼ q) ∨ (~ p ∧ q) 
                       ≡  [p ∧ ~ q) ∨ ~ p] ∧ [(p ∧ ~ q) ∨ q] 
                       ≡ (p  ∨ q) ∧ ∼ (p ∧ q) 
                      ≡ (p  ∨ q) ∧ (∼ p ∨ ~ q) 
 
LOGICAL EQUIVALENCE 
If two logical expressions have the same logical values in the truth table, then we say that 
the two logical expressions are logically equivalent. In the following example, ~ (~ p ) is 
logically equivalent p. So it is written as ~(~p) ≡  p 
 
Double Negative Property   ~(~p) ≡  p 

 
 
 
 
 
 

 

Example 
Rewrite in a simpler form: 
                         “It is not true that I am not happy.” 
Solution: 
 
Let  p = “I am happy” 
then  ~ p = “I am not happy” 
and  ~ ( ~ p) = “It is not true that I am not happy” 
Since   ~ ( ~ p) ≡ p  
Hence the given statement is equivalent to “I am happy” 
 
Example 
 Show that ~ (p∧q) and  ~ p ∧ ~ q are not logically equivalent 
Solution: 
 

 
 
 
 
 
 
 
 
Different truth values in row 2 and row 3 
 
 

F T F 

T F T 

~(~p) ~p  p 

T T F T T F F 

F T F F T T F 

F T F T F F T 

F F T F F T T 

~p ∧ ~q~(p∧q)p∧q~q ~p  q p 
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DE MORGAN’S LAWS 
 
1)   The negation of an AND statement is logically equivalent to the OR statement in 
which each component is negated. 
 
                     Symbolically    ~ (p ∧ q) ≡ ~ p ∨ ~ q 
 
2)   The negation of an OR statement is logically equivalent to the AND statement in 
which each component is negated. 
                      
                                Symbolically   ~ (p ∨ q) ≡ ~ p ∧ ~ q                                
 
Truth Table of  ~ (p ∨ q) ≡ ~ p ∧ ~ q 

 
 
 
 
 
 
  

     Same truth values 
APPLICATION: 
 
Give negations for each of the following statements: 

a) The fan is slow or it is very hot. 
b) Akram is unfit and Saleem is injured. 

 
Solution: 

a) The fan is not slow and it is not very hot. 
b) Akram is not unfit or Saleem is not injured. 

 
INEQUALITIES AND DEMORGAN’S LAWS: 
 
Use DeMorgan’s Laws to write the negation of 
                                  -1 < x ≤ 4     for some particular real number x 
Here,  -1 < x ≤ 4 means x > –1 and x ≤ 4 
The negation of  ( x > –1 and x ≤ 4 )  is  (  x ≤ –1 OR  x > 4 ). 
 
We can explain it as follows:  
Suppose    p :  x > –1 
                 q :  x ≤ 4 
              ~ p :  x ≤ –1 
              ~ q :  x > 4 
The negation of    x > –1 AND  x ≤ 4  
                          ≡     ~ ( p ∧ q )  

TTFT T F F 
FFTF T T F 
FFTT F F T 
FFTF F T T 

~p ∧ ~q~(p ∨ q)p ∨ q~q ~p  q  p 



2-Truth Tables      VU                       
 
 

 
© Copyright Virtual University of Pakistan 

13

                          ≡     ~ p  ∨ ~ q                     by DeMorgan’s Law, 
                          ≡     x ≤ –1 OR  x > 4 
 
EXERCISE:  
1. Show that (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) 
2. Are the statements ( p ∧ q ) ∨ r and   p ∧ ( q ∨ r )  logically equivalent? 
 
TAUTOLOGY: 
A tautology is a statement form that is always true regardless of the truth values of the 
statement variables. A tautology is represented by the symbol “t”. 
 
EXAMPLE: The statement form p ∨ ~ p is tautology 
 
 
 
 
 
 
 

      p ∨ ~ p ≡ t 
 
CONTRADICTION: 
A contradiction is a statement form that is always false regardless of the truth values of 
the statement variables.  A contradiction is represented by the symbol “c”. 
 
So if we have to prove that a given statement form is CONTRADICTION, we will make 
the truth table for the statement form and if in the column of the given statement form all 
the entries are F, then we say that statement form is contradiction. 
 
EXAMPLE:  
The statement form p ∧ ~ p is a contradiction. 
 

p ~ p p ∧ ~ p 

T F F 
F T F 

 
Since in the last column in the truth  table we have F in all the entries, so it is a 
contradiction  i.e.  p ∧ ~ p ≡c 
  
REMARKS: 

– Most statements are neither tautologies nor contradictions. 
– The negation of a tautology is a contradiction and vice versa. 
– In common usage we sometimes say that two statement are contradictory.  

                        By this we mean that their conjunction is a contradiction: they cannot both     
                        be true. 
 
 

T T F 

T F T 

p ∨ ~ p ~ p  p 
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LOGICAL EQUIVALENCE INVOLVING TAUTOLOGY 
 
1. Show that p ∧ t ≡ p 
 

p t p ∧ t 

T T T 

F T F 

 
Since in the above table the entries in the first and last columns are identical so we have 
the corresponding statement forms are Logically equivalent that is 
 p ∧ t ≡ p 
 
LOGICAL EQUIVALENCE INVOLVING CONTRADICTION 
 
Show that  p ∧ c ≡ c 
 

 

 
There are same truth values in the indicated columns, so p ∧ c ≡ c 
 
EXERCISE: 
Use truth table to show that ( p ∧ q ) ∨ (~ p ∨ ( p ∧ ~q )) is a tautology. 
 
SOLUTION: 
                    Since we have to show that the given statement form is Tautology, so the 
column of the above proposition in the truth table will have all entries as T. As clear from 
the table below  

p q p ∧ q ~ p ~ q p ∧ ~ q ~ p∨ (p ∧ ~q) (p ∧ q) ∨ 
(~p ∨ (p ∧ ~q)) 

T T T F F F F T 

T F F F T T T T 
F T F T F F T T 

F F F T T F T T 
 
Hence ( p ∧ q ) ∨(~ p ∨( p ∧ ~ q )) ≡ t 
 
EXERCISE: 
Use truth table to show that (p ∧ ~q) ∧(~p∨q) is a contradiction. 
 
 

p c p ∧ c 

T F F 

F F F 
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SOLUTION: 
    Since we have to show that the given statement form is Contradiction, so its 
column in the truth table will have all entries as F. As clear from the table below. 

p q ~ q p ∧ ~ q ~ p ~ p ∨ q ( p ∧ ~ q ) ∧( ~ p ∨ q ) 
T T F F F T F 
T F T T F F F 
F T F F T T F 
F F T F T T F 

 
LAWS OF LOGIC 
 
1)  Commutative Laws 
               p ∧ q  ≡ q ∧  p 
               p ∨ q  ≡ q ∨  p 
 
2)  Associative Laws 
               ( p ∧ q  )  ∧ r    ≡  p ∧ ( q  ∧ r ) 
               ( p ∨ q  )  ∨ r    ≡  p ∨ ( q  ∨ r ) 
 
3)  Distributive Laws 
                    p ∧ ( q ∨ r )  ≡ ( p ∧ q  )  ∨ (   p ∧ r )    
                    p ∨ ( q  ∧ r )  ≡ ( p ∨ q  )  ∧ (   p ∨ r )    
 
4) Identity Laws                   
                    p ∧ t  ≡ p 
                    p ∨ c ≡ p 
 
5) Negation Laws 
                   p ∨ ∼p ≡ t 
                   p ∧ ∼p ≡ c 
 
6) Double Negation Law 
                      ∼( ∼p) ≡ p 
 
7) Idempotent Laws 
                    p ∧ p ≡ p 
                    p ∨ p ≡ p 
 
8) DeMorgan’s Laws 
                   ~ ( p ∧ q )  ≡ ~p ∨ ∼q 
                   ~ ( p ∨ q )  ≡ ~p ∧ ∼q 
 
9) Universal Bound Laws 
                      p ∨ t ≡ t                     
                      p ∧ c  ≡ c 
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10) Absorption Laws                    
                    p ∨ ( p  ∧ q )  ≡ p 
                    p ∧ ( p  ∨ q )  ≡ p 
 
11) Negation of t and c                    
                    ~ t ≡ c 
                    ~ c ≡ t 
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Lecture No.3   Laws of Logic 
 
 
APPLYING LAWS OF LOGIC 
Using law of logic, simplify the statement form 
                p ∨ [~(~p ∧ q)]  
Solution: 
p ∨ [~(~p ∧ q)]  ≡ p ∨ [~(~p) ∨ (~q)]                         DeMorgan’s Law 
    ≡ p ∨ [p∨(~q)]              Double Negative Law: ~(~p) ≡ p  

  ≡ [p ∨ p]∨(~q)              Associative Law for ∨     
              ≡ p ∨ (~q)                          Idempotent Law:  p ∨ p ≡ p 

That is the simplified statement form. 
 
Example: Using Laws of Logic, verify the logical equivalence 

                    ~ (~ p  ∧ q) ∧ (p ∨ q) ≡ p 
Solution: 
   ~(~p  ∧ q) ∧ (p∨q) ≡ (~(~p) ∨ ~q) ∧(p ∨ q)              DeMorgan’s Law 
                                  ≡ (p ∨ ~q) ∧ (p∨q)              Double Negative Law                          
                                  ≡ p ∨ (~q ∧ q)                            Distributive Law 
            ≡ p ∨ c                           Negation Law 
            ≡ p                   Identity Law 
 
SIMPLIFYING A STATEMENT: 
“You will get an A if you are hardworking and the sun shines, or you are hardworking 
and it rains.”  Rephrase the condition more simply. 
Solution: 
 Let p = “You are hardworking’ 
  q = “The sun shines” 
   r = “It rains”  . 
 
The condition is (p ∧ q) ∨ (p ∧ r)  
Using distributive law in reverse,  
                      (p ∧ q) ∨ (p ∧ r) ≡ p ∧ (q ∨ r) 
 
Putting p ∧ (q ∨ r) back into English, we can rephrase the given sentence as 
“You will get an A if you are hardworking and the sun shines or it rains. 
 
EXERCISE: 
Use Logical Equivalence to rewrite each of the following sentences more simply. 
 
1.It is not true that I am tired and you are smart. 
 {I am not tired or you are not smart.}  
2.It is not true that I am tired or you are smart. 
 {I am not tired and you are not smart.} 
3.I forgot my pen or my bag and I forgot my pen or my glasses. 
 {I forgot my pen or I forgot my bag and glasses. 
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4.It is raining and I have forgotten my umbrella, or it is raining and I have  
            forgotten my hat. 
 {It is raining and I have forgotten my umbrella or my hat.} 
 
CONDITIONAL STATEMENTS: 
Introduction 
Consider the statement: 
                      "If you earn an A in Math, then I'll buy you a computer."  
This statement is made up of two simpler statements:  
p: "You earn an A in Math"  
q: "I will buy you a computer."  
 
The original statement is then saying : 
                             if p is true, then q is true, or, more simply, if p, then q. 
 We can also phrase this as p implies q. It is denoted by  p → q.  
 
CONDITIONAL STATEMENTS OR IMPLICATIONS: 
 
If p and q are statement variables, the conditional of q by p is    “If p then q”  
or “p implies q” and is denoted p → q. 
 
p → q is false when p is true and q is false; otherwise it is true.  
The arrow "→ " is the conditional operator.  
In p → q, the statement p is called the hypothesis (or antecedent) and q is called the 
conclusion (or consequent). 
  

TRUTH TABLE: 
 
 
 
 
 
 
 
 
PRACTICE WITH CONDITIONAL STATEMENTS: 
 
Determine the truth value of each of the following conditional statements: 
1. “If 1 = 1, then 3 = 3.”   TRUE 
2. “If 1 = 1, then 2 = 3.”   FALSE 
3. “If 1 = 0, then 3 = 3.”    TRUE 
4. “If 1 = 2, then 2 = 3.”   TRUE 
5. “If 1 = 1,then 1 = 2 and 2 = 3.”  FALSE 
6. “If 1 = 3 or 1 = 2 then 3 = 3.”  TRUE 
 
 
 

T F F 

T T F 

F F T 

T T T 
p → q q p 
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ALTERNATIVE WAYS OF EXPRESSING IMPLICATIONS: 
The implication p → q could be expressed in many alternative ways as: 
•“if p then q”                            •“not p unless q” 
•“p implies q”   •“q follows from p” 
•“if p, q”   •“q if p” 
•“p only if q”   •“q whenever p” 

•“p is sufficient for q”  •“q is necessary for p” 
 
EXERCISE: 
Write the following statements in the form “if p, then q” in English. 
a)Your guarantee is good only if you bought your CD less than 90 days ago. 
 If your guarantee is good, then you must have bought  your CD player less  
           than 90 days ago. 
b)To get tenure as a professor, it is sufficient to be world-famous. 
 If you are world-famous, then you will get tenure as a professor. 
c)That you get the job implies that you have the best credentials. 
 If you get the job, then you have the best credentials. 
d)It is necessary to walk 8 miles to get to the top of the Peak. 
 If you get to the top of the peak, then you must have walked  8 miles. 
 
TRANSLATING  ENGLISH SENTENCES TO SYMBOLS: 
 Let p and q be propositions: 
   p = “you get an A on the final exam” 
   q = “you do every exercise in this book” 
   r = “you get an A in this class” 
 
Write the following propositions using p, q, and r and logical connectives. 
 
1.To get an A in this class it is necessary for you to get an A on the final. 
SOLUTION  p → r 
 
2.You do every exercise in this book; You get an A on the final, implies, 
            you  get an A in the class. 
SOLUTION  p ∧ q → r 
 
3. Getting an A on the final and doing every exercise in this book is sufficient  
For  getting an A in this class. 
SOLUTION  p ∧ q → r 
 
TRANSLATING SYMBOLIC PROPOSITIONS TO ENGLISH: 
Let p, q, and r be the propositions: 
 p = “you have the flu” 
 q = “you miss the final exam” 
 r = “you pass the course” 
Express the following propositions as an English sentence. 
1.     p → q 
 If you have flu, then you will miss the final exam. 
 
2.      ~q → r 
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 If you don’t miss the final exam, you will pass the course. 
3.      ~p ∧ ~q→ r 
 If you neither have flu nor miss the final exam, then you will pass the course.  
 
HIERARCHY OF OPERATIONS 
FOR LOGICAL CONNECTIVES 
•~ (negation) 
•∧ (conjunction), ∨ (disjunction) 
•→ (conditional) 
 
 
Example: Construct a truth table for the statement form  p ∨ ~ q → ~ p 
 
 
 
 
 
 
 
 
 
 
Example: Construct a truth table for the statement form  (p →q)∧(~ p → r) 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T T T T F F 

T F T F T F 

F T F T F T 

F T F F T T 

p ∨ ~ q → ~ p p ∨ ~q ~p ~
q 

q p 

F F T T F F F 

T T T T T F F 

F F T T F T F 

T T T T T T F 

F T F F F F T 

F T F F T F T 

T T F T F T T 

T T F T T T T 

(p→q)∧(~ p →r)~p→r~p p→q r q p 
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LOGICAL EQUIVALENCE INVOLVING IMPLICATION 
Use truth table to show p→q ≡ ~q → ~p   
 
 
 
 
 
 
 
 
 
 
 
                    same truth values 
Hence the given two expressions are equivalent.    
 
IMPLICATION LAW 
                                                   p→q ≡ ~p∨q 
 
 
 
 
 
 
 
                                                                                                     same truth values 
NEGATION OF A CONDITIONAL STATEMENT: 
Since      p→q ≡ ~ p∨q  
So   ~ (p → q) ≡ ~ (~ p ∨ q) 
                        ≡ ~ (~ p) ∧ (~ q)       by De Morgan’s law 
             ≡  p ∧ ~ q             by the Double Negative law 
 
Thus the negation of “if p then q” is logically equivalent to “p and not q”. 
 Accordingly, the negation of an if-then statement does not start with the word if. 
 
EXAMPLES 
 
Write negations of each of the following statements: 
1.If Ali lives in Pakistan then he lives in Lahore. 
2.If my car is in the repair shop, then I cannot get to class. 
3.If x is prime then x is odd or x is 2. 
4.If n is divisible by 6, then n is divisible by 2 and n is divisible by 3. 

T T T T F F 

T T T F T F 

F F F T F T 

T T F F T T 

~q → ~p p→q ~p ~q q p 

T T T F F 

T T T T F 

F F F F T 

T F T T T 

~p∨q~p p→qq p 
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SOLUTIONS: 
1.  Ali lives in Pakistan and he does not live in Lahore. 
2.  My car is in the repair shop and I can get to class. 
3.  x is prime but x is not odd and x is not 2. 
4.  n is divisible by 6 but n is not divisible by 2 or by 3. 
 
INVERSE OF A CONDITIONAL STATEMENT: 
The inverse of the conditional statement p → q is ~p → ~q  
A conditional and its inverse are not equivalent as could be seen from the truth table. 
 
 
 
 
 
 
                                                           different truth values in rows 2 and 3 
WRITING INVERSE: 
 
1.    If today is Friday, then 2 + 3 = 5. 
 If today is not Friday, then 2 + 3 ≠ 5. 
 
2.   If it snows today, I will ski tomorrow. 
 If it does not snow today I will not ski tomorrow. 
 
3.   If P is a square, then P is a rectangle. 
 If P is not a square then P is not a rectangle. 
 
4.   If my car is in the repair shop, then I cannot get to class. 
 If my car is not in the repair shop, then I shall get to the class. 
 
 
CONVERSE OF A CONDITIONAL STATEMENT: 
 
The converse of the conditional statement p → q is q →p.  
 
A conditional and its converse are not equivalent. i.e., →  is not a commutative operator. 
 
 
 
 
 
 

T T T T F F 

F F T T T F 

T T F F F T 

T F F T T T 

~p →~q~q ~p p→qq p 
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                                                                     not the same 
 WRITING CONVERSE: 
 
1.If today is Friday, then 2 + 3 = 5. 
 If 2 + 3 = 5, then today is Friday. 
 
2.If it snows today, I will ski tomorrow. 
 I will ski tomorrow only if it snows today. 
 
3.   If P is a square, then P is a rectangle. 
 If P is a rectangle then P is a square. 
 
4.   If my car is in the repair shop, then I cannot get to class. 
 If I cannot get to the class, then my car is in the repair shop. 
 
CONTRAPOSITIVE OF A CONDITIONAL STATEMENT: 
The contra-positive of the conditional statement p → q is ~ q → ~ p  
A conditional and its contra-positive are equivalent.  
                                  Symbolically   p→q ≡ ~q → ~p 
1.If today is Friday, then 2 + 3 = 5. 
 If 2 + 3 ≠ 5, then today is not Friday. 
2.If it snows today, I will ski tomorrow. 
 I will not ski tomorrow only if it does not snow today. 
3.   If P is a square, then P is a rectangle. 
 If P is not a rectangle then P is not a square. 
4.   If my car is in the repair shop, then I cannot get to class. 
 If I can get to the class, then my car is not in the repair shop. 
 
EXERCISE: 
1.  Show that  p→q ≡ ~ q → ~ p       ( Use the truth table. )
2.  Show that  q→ p ≡ ~ p → ~ q      ( Use the truth table. ) 

T T F F 

F T T F 

T F F T 

T T T T 

q→pp→qq p 
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Lecture No.4   Biconditional 
 

BICONDITIONAL 
 
If p and q are statement variables, the biconditional of p and q is “p if and only if q”.  
It is denoted p↔q. “if and only if” is abbreviated as iff. 
The double headed arrow " ↔" is the biconditional operator.  
 
TRUTH  TABLE FOR p↔q. 
 
 
 
 

 
 
 

Remark: 
o p ↔ q is true only when p and q both are true or both are false. 
o p ↔ q is false when either p or q is false. 

 
EXAMPLES: 
Identify which of the following are True or false?  
 
1.“1+1 = 3 if and only if earth is flat” 
 TRUE  
2. “Sky is blue iff 1 = 0” 
 FALSE 
3. “Milk is white iff birds lay eggs” 
 TRUE 
4. “33 is divisible by 4 if and only if horse has four legs” 
 FALSE 
5. “x > 5 iff x2 > 25” 
 FALSE 
 
REPHRASING BICONDITIONAL: 
 
p↔q is also expressed as:  
 

o “p is necessary and sufficient for q”  
o “If p then q, and conversely” 
o “p is equivalent to q” 

 
 
 
 

T F F 

F T F 

F F T 

T T T 

p ↔q q p 
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Example:   Show that p ↔ q ≡ (p→q) ∧ (q→ p)  
 
 
 
 
 
 
 
 
 
                                                           
                                                        same truth values 
                                                             
EXERCISE: 
Rephrase the following propositions in the form “p if and only if q” in English. 
 
1. If it is hot outside, you buy an ice cream cone, and if you buy an ice cream  
          cone, it is hot outside. 
Sol You buy an ice cream cone if and only if it is hot outside. 
 
2. For you to win the contest it is necessary and sufficient that you have the 
           only winning ticket. 
Sol You win the contest if and only if you hold the only winning ticket. 
 
3.  If you read the news paper every day, you will be informed and conversely. 
Sol You will be informed if and only if you read the news paper every day. 
 
4. It rains if it is a weekend day, and it is a weekend day if it rains. 
Sol It rains if and only if it is a weekend day. 
 
5. The train runs late on exactly those days when I take it. 
Sol The train runs late if and only if it is a day I take the train. 
 
6. This number is divisible by 6 precisely when it is divisible by both 2 and 3. 
Sol This number is divisible by 6 if and only if it is divisible by both 2 and 3. 
 

TRUTH TABLE FOR (p→q) ↔ (~ q→ ~ p) 
 
 
 
 
 
 
 

T T T T F F 

F F T F T F 

F T F F F T 

T T T T T T 

(p→q)∧(q→p) q→p p→q p↔q q p 

T T T T T F F 

T T T F T T F 

T F F T F F T 

T T F F T T T 

(p→q) ↔ (~ q→ ~ p) ~ q→ ~ p~p ~q p→q q p 
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TRUTH TABLE FOR ( p↔q ) ↔ ( r ↔ q ) 
 

 
 
 
 
 
 
 
 
 

 
 

TRUTH TABLE FOR p ∧ ~r  ↔ q ∨ r 
 
Here p ∧ ~ r ↔q ∨ r means (p ∧ (~ r)) ↔(q ∨ r) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

T T T F F F 

F F T T F F 

T F F F T F 

F T F T T F 

F T F F F T 

T F F T F T 

F F T F T T 

T T T T T T 

(p ↔q)↔( r↔ q) r ↔ qp ↔ qr q p 

T F F T F F F 

F T F F T F F 

F T F T F T F 

F T F F T T F 

F F T T F F T 

F T F F T F T 

T T T T F T T 

F T F F T T T 

p ∧ ~r ↔q∨r q∨rp∧~r~r r q p 
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LOGICAL EQUIVALENCE INVOLVING BICONDITIONAL 
 
Example:  Show that ~p ↔ q and p ↔ ~q are logically equivalent. 
 
 
 
 
 
 
 
                                                   same truth values 
Hence ~p ↔ q ≡  p ↔ ~q 
 
EXERCISE: 
Show that ~(p⊕q) and p↔q are logically equivalent. 
 
 

 
 
 
 
                                               same truth values 
Hence  ~(p⊕q) ≡  p↔q 
 
LAWS OF LOGIC: 
1.Commutative Law:              p ↔ q ≡ q ↔ p      
2.Implication Laws: p → q ≡ ~ p ∨ q                              
                                                                       ≡ ~ ( p ∧ ~ q) 
3.Exportation Law:        (p ∧ q)→r ≡ p →(q →r) 
4.Equivalence:                           p ↔ q ≡ (p →q)∧(q →p) 
5.Reductio ad absurdum              p →q  ≡ (p ∧ ~q) →c  
 
APPLICATION: 
Example:  Rewrite the statement forms without using the symbols → or ↔ 
1.    p ∧ ~ q→ r    
2.   ( p→ r ) ↔ ( q → r ) 
 

F F T T F F 

T T F T T F 

T T T F F T 

F F F F T T 

p ↔ ~q~p↔q~q ~p q p 

T T F F F 

F F T T F 

F F T F T 

T T F T T 

p↔q~(p⊕q)p⊕q q p 
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Solution: 
1.    p∧~q→r ≡ (p ∧ ~q)→ r      Order of operations 
           ≡ ~ (p ∧ ~ q) ∨ r     Implication law 
 
2.   (p→r)↔(q →r) ≡ (~p ∨ r) ↔ (~q ∨ r) Implication law 
          ≡ [(~p ∨ r) →(~q ∨ r)] ∧ [(~q ∨ r) →(~p ∨ r)] 
                            Equivalence of biconditional 
                 ≡ [~(~p ∨ r) ∨ (~q ∨ r)] ∧ [~(~q ∨ r) ∨ (~p ∨ r)] 
                 Implication law 
Example:  Rewrite the statement form  ~p ∨ q → r ∨ ~q to a logically equivalent form 
that uses only ~ and ∧. 
Solution: 
 
STATEMENT   REASON     
    ~p ∨ q → r ∨ ~q   Given statement form 
≡ (~p ∨ q) → (r ∨ ~q)  Order of operations 
≡ ~[(~p ∨ q) ∧ ~ (r ∨ ~q)] Implication law   p→q ≡ ~(p∧~ q) 
≡ ~[~(p ∧ ~q) ∧ (~r ∧ q)]  De Morgan’s law 
 
Example:  Show that ~(p→q) → p is a tautology without using truth tables. 
 
Solution: 
 
        STATEMENT  REASON 
   ~(p→q) → p   Given statement form 
≡ ~[~(p ∧ ~q)] → p  Implication law   p→q ≡ ~(p ∧ ~q) 
≡ (p ∧ ~q) → p  Double negation law 
≡ ~(p ∧ ~q) ∨ p  Implication law   p→q ≡ ~p ∨ q 
≡ (~p ∨ q) ∨ p    De Morgan’s law 
≡ (q ∨ ~p) ∨ p   Commutative law of ∨ 
≡ q ∨ (~p ∨ p)             Associative law of  ∨ 
≡ q ∨ t              Negation law 
≡ t              Universal bound law 
    
EXERCISE: 
Suppose that p and q are statements so that p→q is false. Find the truth values  
of each of the following: 
1.~ p  → q 
2.p ∨ q  
3.q ↔ p 
SOLUTION 
Hint: ( p→q is false when p is true and q is false.) 
1.TRUE 
2.TRUE 
3.FALSE
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Lecture No.5   Argument 
 
Before we discuss in detail about the argument, we first consider the following argument: 
 
An interesting teacher keeps me awake. I stay awake in Discrete Mathematics class. 
Therefore, my Discrete Mathematics teacher is interesting. 
 
Is the above argument valid? 
 
ARGUMENT: 
An argument is a list of statements called premises (or assumptions or  
hypotheses) followed by a statement called the conclusion.  
P1    Premise  
P2   Premise  
P3    Premise 
 . . . . .. . . . .  
Pn     Premise  
______________ 
∴C    Conclusion 
 
NOTE: The symbol ∴ read “therefore” is normally placed just before the conclusion. 
 
VALID AND INVALID ARGUMENT: 
An argument is valid if the conclusion is true when all the premises are true. 
Alternatively, an argument is valid if conjunction of its premises imply conclusion.     
That is  (P1∧ P2 ∧ P3 ∧ . . . ∧ Pn) → C is a tautology. 
An argument is invalid if the conclusion is false when all the premises are true. 
Alternatively, an argument is invalid if conjunction of its premises does not imply 
conclusion. 
Critical Rows: The critical rows are those rows where the premises have truth value T. 
 
EXAMPLE:Show that the following argument form is valid: 
   p→q 
   p 

∴ q 
SOLUTION 
                   premises                  conclusion 
 
 
 

  
 
 

F F T F F 

T F T T F 

F T F F T 

T T T T T 

q p p→q q p 

critical row 
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Since the conclusion q is true when the premises p→q and p are True. Therefore, it is a 
valid argument. 
 
EXAMPLE      Show that the following argument form is invalid: 
    p→q 
    q 
         ∴   p 

 
SOLUTION               premises        conclusion 

 
 

 
 
 
 
In the second critical row, the conclusion is false when the premises p→q and q are true. 
Therefore, the argument is invalid. 
 
EXERCISE: 
Use truth table to determine the argument form  
   p ∨ q 
   p → ~q 
   p → r 

∴ r 
is valid or invalid. 
                                                         premises           conclusion 
 
 
 
 

 
 
 
 
 
 

F F T F F 

F T T T F 

T F F F T 

T T T T T 

p q p→qq p 

critical row 

F T T F F F F 

T T T F T F F 

F T T T F T F 

T T T T T T F 

F F T T F F T 

T T T T T F T 

F F F T F T T 

T T F T T T T 

r p→rp→~qp∨q r q p 

critical rows
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In the third critical row, the conclusion is false when all the premises are true. Therefore, 
the argument is invalid. 

The argument form is invalid 
WORD PROBLEM 

 
If Tariq is not on team A, then Hameed is on team B.  
If Hameed is not on team B, then Tariq is on team A. 

∴  Tariq is not on team A or Hameed is not on team B. 
SOLUTION 
 Let   
  t = Tariq is on team A 
  h = Hameed is on team B 
 Then the argument is 
     ~ t → h 
     ~ h → t 
 ∴ ~ t ∨ ~ h 
 

t h ~t → h ~h → t ~t ∨~h 
T T T T F 
T F T T T 
F T T T T 
F F F F T 

 
Argument is invalid because there are three critical rows.  
 
( Remember  that the critical rows are those rows where the premises have truth value T) 
and in the first critical row conclusion has truth value F.  
 
(Also remember that we say an argument is valid if in all critical rows conclusion has 
truth value T) 
 
EXERCISE 
If at least one of these two numbers is divisible by 6, then the product of these two 
numbers is divisible by 6. 
Neither of these two numbers is divisible by 6. 

∴ The product of these two numbers is not divisible by 6. 
SOLUTION 
Let  d =  at least one of these two numbers is divisible by 6. 
 p = product of these two numbers is divisible by 6. 
Then the  argument become in these symbols 
  d → p 
  ~ d 
  ∴   ~ p 
We will made the truth table for  premises and conclusion as given below 
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d p d → p ~d ~p 
T T T F F 
T F F F T 
F T T T F 
F F T T T 

In the first critical row, the conclusion is false when the premises are true. Therefore, the 
argument is invalid. 
 
EXERCISE 
If  I got an Eid bonus, I’ll buy a stereo. 
If  I sell my motorcycle, I’ll buy a stereo. 

∴ If I get an Eid bonus or I sell my motorcycle, then I’ll buy a stereo. 
SOLUTION: 
  Let  
   e = I got an Eid bonus 
   s = I’ll buy a stereo 
   m = I sell my motorcycle 
The argument is 
  e → s 
  m → s 
          ∴e ∨ m → s 
 

e s m e →s m →s e∨m e∨m →s 
T T T T T T T 
T T F T T T T 
T F T F F T F 
T F F F T T F 
F T T T T T T 
F T F T T F T 
F F T T F T F 
F F F T T F T 

 
The argument is valid because in the five critical rows, the conclusion is true. 
  
EXERCISE 
An interesting teacher keeps me awake. I stay awake in Discrete Mathematics class. 
Therefore, my Discrete Mathematics teacher is interesting. 
 
Solution: 
                 t = My teacher is interesting   
                 a = I stay awake   
                 m = I am in Discrete Mathematics class  
 
 
The argument to be tested is  
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t → a, 
    a ∧ m  
Therefore   m ∧ t 
 
 

t a m t → a a ∧ m m ∧ t 
T T T T T T 
T T F T F F 
T F T F F T 
T F F F F F 
F T T T T F 
F T F T F F 
F F T T F F 
F F F T F F 

 
In the second critical row, the conclusion is false when the premises are true. Therefore, 
the argument is invalid. 
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Lecture No.6   Applications of Logic 
 
SWITCHES IN SERIES 

 
 
 
 
 
 
SWITCHES IN PARALLEL: 
 
 
 
 
 
 
 
 
 
 
 
 
SWITCHES IN SERIES: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                 P           Q            

Light bulb

 

open

closed

Off Open        Open 

Off Open        Closed 

Off Closed       Open 

On Closed       Closed 

State P   Q 

Light Bulb Switches 

      P 

Q

Light bulb

Off Open     Open 

On Open     Closed 

On Closed   Open 

On Closed   Closed 

State P              Q 

Light Bulb Switches 

Off Open       Open 

Off Open       Closed 

Off Closed     Open 

On Closed     Closed 

State P  Q 

Light Bulb Switches 

F F F 

F T F 

F F T 

T T T 

P ∧Q Q P 
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SWITCHES IN PARALLEL: 
 
 
 
 
 
 
 
 
 
 
 
 
 
1.  NOT-gate 
 A NOT-gate (or inverter) is a circuit with one input and one output signal. If the 
input signal is 1, the output signal is 0. Conversely, if the input signal is 0, then the output 
signal is 1. 
 
 
 
 
 
 
 
 
2.  AND-gate 
An AND-gate is a circuit with two input signals and one output signal. 
If both input signals are 1, the output signal is 1. Otherwise the output signal is 0. 
Symbolic representation & Input/Output Table 

 
 
 
 
 
 
 
3.  OR-gate 
An OR-gate is a circuit with two input signals and one output signal. If both input signals 
are 0, then the output signal is 0. Otherwise, the output signal is 1.  
Symbolic representation & Input/Output Table 
 
 

Off Open        Open 

On Open      Closed 

On Closed     Open 

On Closed     Closed 

State P  Q 

Light Bulb Switches 

F F F 

T T F 

T F T 

T T T 

P ∨ QQ P 

P 
NOT

R

1 0 

0 1 

R P 

Output Input 

P 

AND

Q

R

0 0 0 

0 1 0 

0 0 1 

1 1 1 

R QP 

Output Input 
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COMBINATIONAL CIRCUIT: 
 A Combinational Circuit is a compound circuit consisting of the basic logic    
 gates such  as NOT, AND, OR. 
 
 
 
 
 
 
 
DETERMINING OUTPUT FOR A GIVEN INPUT: 
Indicate the output of the circuit below when the input signals are P = 1, Q = 0 and R = 0 
 
 
 
 
 
 
 
 
 
SOLUTION:

      
Output S = 1 
CONSTRUCTING THE INPUT/OUTPUT TABLE FOR A CIRCUIT 
Construct the input/output table for the following circuit. 

R
OR

P

Q

0 0 0 

1 1 0 

1 0 1 

1 1 1 

R Q P 

Output Input 

AND
P

Q

NOT

OR

R

AND
P
Q

NOT

OR
R

S
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LABELING INTERMEDIATE OUTPUTS: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FINDING A BOOLEAN EXPRESSION FOR A CIRCUIT 
 
 
 
 
 
 
 
 
 
 
 
 

AND
P

Q
NOT

R

S
OR

AND
P

Q
NOT

R

S
OR

X Y

1 1 0 0 0 0 

1 1 0 1 0 0 

1 1 0 0 1 0 

1 1 0 1 1 0 

1 1 0 0 0 1 

1 1 0 1 0 1 

0 0 1 0 1 1 

1 0 1 1 1 1 

S Y X R Q P 

AND

OR

OR
P

Q

R
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SOLUTION: 
Trace through the circuit from left to right, writing down the output of each logic gate. 
 
 
 
 
 
 
 
 
Hence (P∨Q) ∧(P∨R) is the Boolean expression for this circuit.  
CIRCUIT CORRESPONDING TO A BOOLEAN EXPRESSION 
EXERCISE 
Construct circuit for the Boolean expression    (P∧Q) ∨ ~R 

SOLUTION 
 
 
 
 
 
 
 
CIRCUIT FOR INPUT/OUTPUT TABLE: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AND

OR

OR
P

Q

R

P∨Q

P∨R

(P∨Q) ∧ (P∨R)

AND
P

Q

R

OR

NOT

P ∧ Q
(P ∧ Q) ∨ ~R

~R

0 0 0 0 

0 1 0 0 

0 0 1 0 

1 1 1 0 

0 0 0 1 

0 1 0 1 

1 0 1 1 

0 1 1 1 

S R Q P 

OUTPUINPUTS 
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SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CIRCUIT DIAGRAM: 
 
 
 
 
 
 
 
 
EXERCISE:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
SOLUTION: 
We find the Boolean expressions for the circuits and show that they are logically 
 equivalent, when regarded as statement forms.  
 
 

0 0 0 0 

0 1 0 0 

0 0 1 0 

1 1 1 0 

0 0 0 1 

0 1 0 1 

1 0 1 1 

0 1 1 1 

S R Q P 

OUTPUT INPUTS 

P ∧ Q ∧ ~R 

~P ∧ Q ∧ R 

AND

AND

OR
~P ∧ Q ∧ R

S
P
Q

Q
P

R

R

AND

AND

AND

OR

P

Q

NOT

NOT
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STATEMENT    REASON 
  (P ∧ Q) ∨(~P ∧ Q) ∧ (P ∧~ Q) 
≡ (P ∧ Q) ∧ (~P ∧ Q) ∧ (P ∧~ Q)   
≡ (P ∧ ~P) ∧ Q∧ (P ∧~ Q)   Distributive law 
≡ t ∧Q ∧ (P ∧~Q)    Negation law 
≡ Q ∧ (P ∧~Q)     Identity law 
≡ (Q ∧ P) ∧ (Q ∧ ~Q)    Distributive law 
≡ (Q ∧ P) ∧ t     Negation law 
≡   (Q ∨ P) ∨ t  
≡  Q ∨ P     identity law  
≡  P ∨ Q     Commutative law 
Thus  (P ∧ Q) ∧ (~P ∧ Q) ∧ (P ∧~ Q) ≡  P ∧ Q 
Accordingly, the two circuits are equivalent 

AND

AND

AND

OR

P

Q

NOT

NOT

P ∧ Q 

~P ∧ Q 

P ∧ ~Q 

(P ∧ Q) ∨ (~P ∧ Q)∨ (P ∧~ Q)
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Lecture No.7   Set theory 

 
 A well defined collection of distinct objects is called a set. 

  The objects are called the elements or members of the set. 
  Sets are denoted by capital letters A, B, C …, X, Y, Z. 
  The elements of a set are represented by lower case letters  

   a, b, c, … , x, y, z. 
  If an object x is a member of a set A, we write x A∈ , which 

 reads  “x belongs to A” or “x is in A” or “x is an element of A”, 
 otherwise we write x A∉ , which reads “x does not belong to A” or 
 “x is not in A” or “x is not an element of A”. 

TABULAR FORM 
 
 We list all the elements of a set, separated by commas and enclosed within braces 
 or curly brackets{}. 
 
EXAMPLES 
 In the following examples we write the sets in Tabular Form. 
  A = {1, 2, 3, 4, 5}   is the set of first five Natural Numbers. 
  B = {2, 4, 6, 8, …, 50} is the set of Even numbers up to 50.  
  C = {1, 3, 5, 7, 9, …}   is the set of positive odd numbers. 
  
NOTE : The symbol “…” is called an ellipsis. It is a short for “and so forth.” 
 
DESCRIPTIVE FORM: 
 
  We state the elements of a set in words. 
 
EXAMPLES   
  Now we will write the above examples in the Descriptive Form.  
 
   A = set of first five Natural Numbers.     (  Descriptive Form ) 
   B = set of positive even integers less or equal to fifty.  
            (  Descriptive Form ) 
             C = set of positive odd integers.       (  Descriptive Form ) 
 
SET BUILDER FORM: 
 
  We write the common characteristics in symbolic form, shared by all the 
 elements of the set. 
EXAMPLES: 
Now we will write the same examples which we write in Tabular as well as Descriptive 
Form ,in Set Builder Form .  
 A = { | 5}x N x∈ ≤                       (  Set Builder Form) 
 B = { | 0 50}x E x∈ < ≤                (  Set Builder Form) 
 C = { | 0 }x O x∈ <                        ( Set Builder Form) 
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SETS OF NUMBERS: 
 

1. Set of Natural Numbers 
   N = {1, 2, 3, … } 

2. Set of Whole Numbers 
   W = {0, 1, 2, 3, … } 

3. Set of Integers 
   Z = {…, -3, -2, -1, 0, +1, +2, +3, …} 
         = {0, ±1, ±2, ±3, …} 
 {“Z” stands for the first letter of the German word for integer: Zahlen.} 
 

4. Set of Even Integers 
   E = {0, ± 2, ± 4, ± 6, …} 

5. Set of Odd Integers  
   O = {± 1, ± 3, ± 5, …} 

6. Set of Prime Numbers 
   P = {2, 3, 5, 7, 11, 13, 17, 19, …} 

7. Set of Rational Numbers (or Quotient of Integers) 

   Q = { | , , , 0}px x p q Z q
q

= ∈ ≠  

8. Set of Irrational Numbers 
   'Q Q= = { x | x is not rational} 
  For example, 2, 3 , π, e, etc. 

9. Set of Real Numbers 
   'R Q Q= ∪  

10. Set of Complex Numbers  
   C = {z | z = x + iy;  x, y∈R}      Here, 2i = −  
SUBSET: 
     If A & B are two sets, then A is called a subset of B. It is written as A ⊆ B.  
The set A is subset of B if and only if any element of A is also an element of B. 
 Symbolically: 
    A ⊆ B ⇔ if  x∈A,  then x∈B 
 
REMARK: 

1. When A ⊆ B, then B is called a superset of A. 
2. When A is not subset of B, then there exist at least one x ∈  A such 

   that x ∉B. 
3. Every set is a subset of itself. 

EXAMPLES: 
 Let  
  A = {1, 3, 5}  B = {1, 2, 3, 4, 5} 
  C = {1, 2, 3, 4} D = {3, 1, 5} 
 Then   
  A ⊆ B ( Because every element of A is in B ) 
   C ⊆ B  ( Because every element of  C is also an element of B ) 
   A ⊆ D ( Because every element of  A is also an element of D and also note 
   that every element of D is in A so D ⊆ A ) 
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   and A is not subset of C . 
  ( Because there is an element 5 of A which is not in C ) 
EXAMPLE: 
    The set of integers “Z” is a subset of the set of Rational Number  
 “Q”, since every integer ‘n’ could be written as: 
 
   
 
 Hence Z ⊆  Q. 
 
PROPER SUBSET: 
 Let A and B be sets. A is a proper subset of B, if and only if, every element of A 
 is in B but there is at least one element of B that is not in A, and is denoted 
 as A ⊂ B. 
 
EXAMPLE: 
   Let A = {1, 3, 5} B = {1, 2, 3, 5} 
  then A ⊂ B ( Because there is an element 2 of  B which is not in A). 
 
EQUAL SETS: 
 Two sets A and B are equal if and only if every element of A is in B and every 
 element of B is in A and is denoted A = B. 
  Symbolically: 
     A = B iff A ⊆ B and B ⊆ A 
EXAMPLE: 
   Let A = {1, 2, 3, 6} B = the set of positive divisors of 6 
              C = {3, 1, 6, 2} D = {1, 2, 2, 3, 6, 6, 6} 
 Then A, B, C, and D are all equal sets.  
 
NULL SET: 
  A set which contains no element is called a null set, or an empty set or a    
void set. It is denoted by the Greek letter ∅ (phi) or { }. 
EXAMPLE 
   A = {x | x is a person taller than 10 feet} = ∅  
      ( Because there does not exist any human being which is taller then 10 feet ) 
                         B = {x | x2 = 4, x is odd} = ∅  
(Because we know that there does not exist any odd number whose square is 4) 
 
REMARK   
    ∅ is regarded as a subset of every set. 
EXERCISE: 
 Determine whether each of the following statements is true or false. 

a. x ∈ {x}   TRUE 
 ( Because x is the member of the singleton set { x } ) 

a. {x}⊆ {x}   TRUE 
 ( Because Every set is the subset of itself. 
 

Q
1
n n ∈=
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Note that every Set has necessarily two subsets ∅ and the Set itself. These two subset are 
known as Improper subsets and any other subset is called Proper Subset) 
 

a. {x} ∈{x}   FALSE 
 ( Because {x} is not the member of {x} ) Similarly other 
      d. {x} ∈{{x}}   TRUE 
      e. ∅ ⊆ {x}   TRUE 
      f. ∅ ∈ {x}   FALSE 
 
UNIVERSAL SET: 
  The set of all elements under consideration is called the Universal Set. The 
Universal Set is usually denoted by U. 
Example 
              A = { 2, 4, 6 } 
              B = {1, 3, 5 } 
             Universal set = U = { 1, 2, 3, 4, 5, 6 } 
 
VENN DIAGRAM: 
 A Venn diagram is a graphical representation of sets by regions in the plane. 
 The Universal Set is represented by the interior of a rectangle, and the other sets 
 are represented by disks lying within the rectangle. 
 
 
 

                                       
FINITE AND INFINITE SETS: 
 A set S is said to be finite if it contains exactly m distinct elements where m 
 denotes some non negative integer.  
   In such case we write |S| = m or n(S) = m  
 A set is said to be infinite if it is not finite. 
 
EXAMPLES: 

1. The set S of letters of English alphabets is finite and |S| = 26 
2. The null set ∅ has no elements, is finite and |∅| = 0 
3. The set of positive integers {1, 2, 3,…} is infinite. 

 
 

A 

A
B

U 
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EXERCISE: 
 Determine which of the following sets are finite/infinite. 

1. A = {month in the year}   FINITE 
2. B = {even integers}   INFINITE 
3. C = {positive integers less than 1} FINITE 
4. D = {animals living on the earth}  FINITE 
5. E = {lines parallel to x-axis}  INFINITE 
6. F = {x ∈R | x100 + 29x50 – 1 = 0}  FINITE 
7. G = {circles through origin}  INFINITE 

 
MEMBERSHIP TABLE: 
 A table displaying the membership of elements in sets. To indicate that  
 an element is in a set, a 1 is used; to indicate that an element is not in a set, a 0 is 
 used. 
  Membership tables can be used to prove set identities. 
 
 
 
 
 
 
 The above table is the Membership table for Complement of A. Now in the 
 above table note that if an element is the member of A, then it cannot be the     
            Member of  Ac thus where in the table we have 1 for A in that row we have 0  
            in Ac.  
            Similarly, if an element is not a member of A, it will be the member of Ac.     
            So we have 0 for A and 1 for Ac. 

A Ac 
1 0 
0 1 
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Lecture No.8   Venn diagram 

 
 
UNION: 
 Let A and B be subsets of a universal set U. The union of sets A and B is the set 
 of all elements in U that belong to A or to B or to both, and is denoted A ∪ B. 
 Symbolically: 
    A ∪ B = {x ∈U | x ∈A or x ∈ B} 
EMAMPLE: 
   Let U = {a, b, c, d, e, f, g} 
   A = {a, c, e, g}, B = {d, e, f, g} 
   Then   A ∪ B = {x ∈U | x ∈A or x ∈ B} 
       ={a, c, d, e, f, g} 
VENN DIAGRAM FOR UNION: 

 
 

   
REMARK: 
   1.  A ∪ B = B ∪ A  that is union is commutative you can 
 prove this very easily only by using definition. 
   2. A ⊆ A ∪ B  and  B ⊆ A ∪ B 
 The above remark of subset is easily seen by the definition of union. 
 
MEMBERSHIP TABLE FOR UNION: 
 
 
 
 
 
 
 
  
  
REMARK: 
     This membership table is similar to the truth table for logical connective, 
disjunction (∨). 
INTERSECTION: 
 Let A and B subsets of a universal set U. The intersection of sets A and B is the 
set of all elements in U that belong to both A and B and is denoted  A ∩ B. 
 Symbolically: 
    A ∩ B = {x ∈U | x ∈ A and x ∈B} 

A B A ∪ B 
1 1 1 
1 0 1 
0 1 1 
0 0 0 

A

B
U

A ∪ B is shaded
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EXMAPLE: 
   Let U = {a, b, c, d, e, f, g} 
   A = {a, c, e, g}, B = {d, e, f, g} 
   Then    A ∩ B = {e, g} 
 

VENN DIAGRAM FOR INTERSECTION:

U

A

B

A ∩ B is shaded  
REMARK: 

1. A ∩ B = B ∩ A 
2. A ∩ B ⊆ A and  A ∩ B ⊆ B 
3. If  A ∩ B = φ, then A & B are called disjoint sets. 

 
MEMBERSHIP TABLE FOR INTERSECTION: 
 
 
 
 
 
 
 
REMARK: 
                                                                                                                                
This membership table is similar to the truth table for logical connective, conjunction (∧). 
 
DIFFERENCE: 
 Let A and B be subsets of a universal set U. The difference of “A and B” (or 
 relative complement of B in A) is the set of all elements in U that belong to A but 
 not to B, and is denoted A – B or A \ B. 
 Symbolically: 
   A – B = {x ∈U | x ∈ A and x∉B} 
EXAMPLE: 
   Let U = {a, b, c, d, e, f, g} 
   A = {a, c, e, g}, B = {d, e, f, g} 
   Then A – B = {a, c} 
VENN DIAGRAM FOR SET DIFFERENCE: 
 

U

A-B is shaded

A B

 
 

A B A ∩ B 
1 1 1 
1 0 0 
0 1 0 
0 0 0 
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REMARK: 
1. A – B ≠ B – A   that is Set difference is not commutative. 
2. A – B ⊆ A 
3. A – B, A ∩ B and  B – A are mutually disjoint sets. 

 
MEMBERSHIP TABLE FOR SET DIFFERENCE: 
 
 
 
 
 
 
 
 
 
REMARK: 
  The membership table is similar to the truth table for ~ (p →q). 
COMPLEMENT: 
 Let A be a subset of universal set U. The complement of A is the set of all 
 element in U that do not belong to A, and is denoted AΝ, A or Ac 
 Symbolically: 
   Ac = {x ∈U | x ∉A} 
EXAMPLE: 
   Let  U = {a, b, c, d, e, f, g] 
    A = {a, c, e, g} 
   Then  Ac = {b, d, f}   
VENN DIAGRAM FOR COMPLEMENT: 
 

U

A

Ac is shaded

Ac

 
REMARK : 
 

1. Ac = U – A 
2. A ∩ Ac = φ  

        3.    A ∪ Ac = U 
 
MEMBERSHIP TABLE FOR COMPLEMENT: 
 
 
 

A B A – B
1 1 0 
1 0 1 
0 1 0 
0 0 0 

A Ac 
1 0 
0 1 
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REMARK 
  This membership table is similar to the truth table for logical connective  
 negation (~) 
 
EXERCISE: 
 Let  U = {1, 2, 3, …, 10},  X = {1, 2, 3, 4, 5} 
 Y = {y | y = 2 x, x ∈X}, Z = {z | z2 – 9z + 14 = 0} 
 Enumerate: 

(1)X ∩ Y  (2) Y ∪ Z  (3) X – Z 
(4)Yc  (5) Xc – Zc  (6) (X – Z) c 

 Firstly we enumerate the given sets. 
 Given 
  U = {1, 2, 3, …, 10},    
  X = {1, 2, 3, 4, 5} 
  Y = {y | y = 2 x, x ∈X} = {2, 4, 6, 8, 10} 
  Z = {z | z2 – 9 z + 14 = 0} = {2, 7} 
 (1) X ∩ Y = {1, 2, 3, 4, 5} ∩ {2, 4, 6, 8, 10} 
        = {2, 4} 
 (2) Y ∪ Z = {2, 4, 6, 8, 10} ∪ {2, 7} 
        = {2, 4, 6, 7, 8, 10} 
 (3) X – Z = {1, 2, 3, 4, 5} – {2, 7} 
       = {1, 3, 4, 5} 
 (4) Yc = U – Y = {1, 2, 3, …, 10} – {2, 4, 6, 8, 10} 
     = {1, 3, 5, 7, 9} 
 (5) Xc  =  {6, 7, 8, 9, 10} 
                        Zc   =  {1, 3, 4, 5, 6, 8, 9, 10} 
                         Xc – Zc = {6, 7, 8, 9, 10} – {1, 3, 4, 5, 6, 8, 9, 10} 
                = {7} 
 (6) (X – Z)c = U – (X – Z) 
                = {1, 2, 3, …, 10} – {1, 3, 4, 5} 
                = {2, 6, 7, 8, 9, 10} 
  
 NOTE  (X – Z)c ≠ Xc - Zc 
EXERCISE:  
 Given the following universal set U and its two subsets P and Q, where 
  U = {x | x ∈ Z,0 ≤ x ≤ 10} 
  P = {x | x is a prime number} 
  Q = {x | x2 < 70} 

(i) Draw a Venn diagram for the above 
(ii) List the elements in Pc ∩ Q 

SOLUTION: 
   First we write the sets in Tabular form. 
    U = {x | x ∈Z,  0 ≤ x ≤ 10}  
 Since it is the set of integers that are greater then or equal 0 and less or equal to 
 10.  So we have 
  U= {0, 1, 2, 3, …, 10} 
     P = {x | x is a prime number} 
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 It is the set of prime numbers between 0 and 10. Remember  Prime numbers are 
 those numbers which have only two distinct divisors. 
       P = {2, 3, 5, 7} 
    Q = {x | x2 < 70} 
 The set Q contains the elements between 0 and 10 which have their square less or 
 equal to 70. 
        Q= {0, 1, 2, 3, 4, 5, 6, 7, 8} 
 Thus we write the sets in Tabular form. 
 
VENN DIAGRAM: 
 

U

Q
P2,3,5,7

0,1,4,6,8
9,10  

(i)  Pc ∩ Q = ? 
    
  Pc = U – P = {0, 1, 2, 3, …, 10}- {2, 3, 5, 7} 
         = {0, 1, 4, 6, 8, 9, 10} 
  and        
       Pc ∩ Q = {0, 1, 4, 6, 8, 9, 10} ∩ {0, 1, 2, 3, 4, 5, 6, 7, 8} 
        = {0, 1, 4, 6, 8} 
EXERCISE: 
  Let   
   U = {1, 2, 3, 4, 5}, C = {1, 3} 
  and A and B are non empty sets. Find A in each of the following: 

(i) A ∪ B = U, A ∩ B = φ and B = {1} 
(ii) A ⊂ B and  A ∪ B = {4, 5} 

(iii) A ∩ B = {3},  A ∪ B = {2, 3, 4} and  B ∪ C = {1,2,3} 
(iv) A and B are disjoint, B and C are disjoint, and the union of A and B 

is the set {1, 2}. 
(v)  

(i)   A ∪ B = U, A ∩ B = φ and B = {1} 
 
SOLUTION:  
   Since A ∪ B = U = {1, 2, 3, 4, 5} 
   and A ∩ B = φ,  
  Therefore    A = Bc = {1}c = {2, 3, 4, 5} 
 
(ii)  A ⊂ B and  A ∪ B = {4, 5} also C = {1, 3} 
  
SOLUTION:  
   When A ⊂ B, then  A ∪ B = B = {4, 5} 
   Also A being a proper subset of B implies 
   A = {4} or A = {5} 
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(iii) A ∩ B = {3}, A ∪ B = {2, 3, 4}and B ∪ C = {1,2,3} 
  Also C = {1, 3} 
SOLUTION 
 
 

UA
B

C

4
2

1

3

 
 
 Since we have 3 in the intersection of A  and B as well as in C so we place 3 
 in common part shared by the three sets in the Venn diagram. Now since 1 is 
 in the union of B and C it means that 1 may be in C or may be in B, but 1cannot 
 be in B because if 1 is in the B then it must  be in  A ∪ B but 1 is not there, thus 
 we place 1 in the part of C which is not shared by any other set. Same is the 
 reason for 4 and we place it in the set which is not shared by any other set. 
 Now 2 will be in B, 2 cannot be in A because A ∩ B = {3}, and is not in C.  
 So A = {3, 4} and B = {2, 3} 

 
(iv)  A ∩ B = φ,  B ∩ C = φ,  A ∪ B = {1, 2}. 
  Also C = {1, 3} 
 SOLUTION 

U
A B

C
1 2

3 4, 5  
     A = {1} 
EXERCISE: 
  Use a Venn diagram to represent the following: 

(i) (A ∩ B) ∩ Cc 
(ii) Ac ∪ (B ∪ C) 

(iii) (A – B) ∩ C 
(iv) (A ∩ Bc) ∪ Cc 

    
 

U

A
B

C1

2
3

4

5 6

7 8
1
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 (i) (A ∩ B) ∩ Cc 

1

2 3

4
5 6

7

8

A

B

C

(A ∩ B) ∩ Cc is shaded

U

 
  
(ii) Ac ∪ (B ∪ C) is shaded. 

 
 

A

B

C

1

3

7

2

4

5 6

U

8
 

 
(iii) (A – B) ∩ C 
 

U

A

B

C

1

2

3

4
5 6

7

8

(A – B) ∩ C is shaded  
 
(iv)     (A ∩ Bc) ∪ Cc is shaded. 

 

U

8

1

2

3

4
5 6

7

A

B

C
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PROVING SET IDENTITIES BY VENN DIAGRAMS: 
 
  Prove the following using Venn Diagrams: 

(i) A – (A – B) = A ∩ B 
(ii) (A ∩ B)c = A c  ∪ B c  

(iii) A – B = A ∩ B c  
  
 SOLUTION (i) 
   A - (A – B) = A ∩ B 
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SOLUTION (ii) 
   (A ∩ B)c = A c  ∪ B c  
 

 
 
 

----------------(a) 
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 --------------(b) 
  
 Now diagrams (a) and (b) are same hence 
  RESULT:  (A ∩ B)c = A c  ∪ B c  
SOLUTION (iii) 
   A – B = A ∩ Bc 
 

  -------------(a) 
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------------------(b) 
  
 From diagrams (a) and (b) we can say 
     
RESULT:  A – B = A ∩ Bc 
 
PROVING SET IDENTITIES BY MEMBERSHIP TABLE: 
  Prove the following using Membership Table: 

(i) A – (A – B) = A ∩ B 
(ii) (A ∩ B)c = A c  ∪ B c  

(iii) A – B = A ∩ B c  
 

SOLUTION (i) 
    A – (A – B) = A ∩ B 
 
 

A B A-B A-(A-B) A∩B 
1 1 0 1 1 
1 0 1 0 0 
0 1 0 0 0 
0 0 0 0 0 

  
 Since the last two columns of the above table are same hence the 
 corresponding set expressions are same. That is 
    A – (A – B) = A ∩ B 
 
SOLUTION (ii) 
    
    (A ∩ B)c = A c  ∪ B c  
 

A B A∩B (A∩B)c A c B c A c ∪ B c

1 1 1 0 0 0 0 
1 0 0 1 0 1 1 
0 1 0 1 1 0 1 
0 0 0 1 1 1 1 
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 Since the fourth and last columns of the above table are same hence the 
 corresponding set expressions are same. That is 
     (A ∩ B)c = A c  ∪ B c  
 
SOLUTION (iii) 
 
 
 
 
 
 
 

A B A – B Bc A ∩ Bc

1 1 0 0 0 
1 0 1 1 1 
0 1 0 0 0 
0 0 0 1 0 
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Lecture No.9   Set identities 

 
 
SET IDENTITIES: 
 Let A, B, C be subsets of a universal set U.  
  1. Idempotent Laws 
   a. A ∪ A = A  b. A ∩ A = A 
  2. Commutative Laws 
   a.  A ∪ B = B ∪ A b.  A ∩ B = B ∩ A 
  3. Associative Laws 
   a.  A ∪ (B ∪ C) = (A ∪ B) ∪ C  
   b.  A ∩ (B ∩ C) = (A ∩ B) ∩ C 
  4. Distributive Laws 
   a. A ∪ (B ∩ C) = (A ∪ B) ∩  (A ∪ C) 
   b. A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) 
  5. Identity Laws 
   a. A ∪ ∅ = A b. A ∩ ∅ = ∅ 
   c. A ∪ U = U  d. A ∩ U = A 
  6. Complement Laws 
   a. A ∪ Ac = U b. A ∩ Ac = ∅ 
   c. Uc = ∅  d.  ∅ c = U   

8. Double Complement Law 
    (Ac) c = A 
  9. DeMorgan’s Laws 
   a.  (A ∪ B)c = Ac ∩ Bc  b. (A ∩ B)c = Ac ∪ Bc 

10.  Alternative Representation for Set Difference 
    A – B = A ∩ Bc 

11.  Subset Laws 
   a.  A ∪ B ⊆ C iff A ⊆ C and B ⊆ C 
   b. C ⊆ A ∩ B iff C ⊆ A and C ⊆ B 

12.  Absorption Laws 
   a. A ∪ (A ∪ B) = A  b. A ∩ (A ∪ B) = A 
EXAMPLE 1: 

1. A ⊆ A ∪ B 
2. A – B ⊆ A 
3. If A ⊆ B and B ⊆ C then A ⊆ C 
4. A ⊆ B if, and only if, Bc ⊆ Ac 

1. Prove that A ⊆ A ∪ B 
  SOLUTION 
   Here in order to prove the identity  you should remember the 
 definition of Subset of a set. We will take the arbitrary element of a set then show 
 that, that element is the member of the other, then the first set is the subset of the 
 other. So 
   Let x be an arbitrary element of A, that is x ∈A. 
   ⇒  x ∈A or  x ∈B 
    ⇒ x ∈A ∪ B 
 But x is an arbitrary element of A. 
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  ∴ A ⊆ A ∪ B  (proved) 
 

2.  Prove that A – B ⊆ A 
  
 SOLUTION 
 
   Let x ∈A – B 
  ⇒  x ∈A and x ∉B (by definition of A – B) 
  ⇒  x ∈A   (in particular) 
 But x is an arbitrary element of A – B 
  ∴ A – B ⊆ A   (proved) 

3. Prove that if A ⊆ B and B ⊆ C, then A ⊆ C 
  SOLUTION 
   Suppose that A ⊆ B and B ⊆ C 
  Consider x ∈A  
  ⇒  x ∈B   (as A ⊆ B) 
  ⇒  x ∈C    (as B ⊆ C) 
  But x is an arbitrary element of A 
   ∴  A ⊆ C   (proved) 

4. Prove that A ⊆ B iff Bc ⊆ Ac 
  SOLUTION: 
  Suppose A ⊆ B  {To prove Bc ⊆ Ac} 
  Let     x ∈Bc 
   ⇒     x ∉B  (by definition of Bc) 
    ⇒     x ∉A   
   ⇒     x ∈Ac   (by definition of Ac) 
 Now we know that implication and its contrapositivity are logically equivalent 
 and the contrapositive statement of   if x ∈A then x ∈B  is: if x ∉B then x ∉A 
 which is the definition of the A ⊆ B. Thus if we show for any two sets A and B, if 
 x ∉B then x ∉A it means that  
    A ⊆ B. Hence 
   But x is an arbitrary element of Bc 
     ∴ Bc ⊆ Ac    
 Conversely,  
   Suppose Bc ⊆ Ac   {To prove A ⊆ B} 
  Let x ∈A 
         ⇒  x ∉ Ac   (by definition of Ac) 
        ⇒  x ∉ Bc   (∵ Bc ⊆ Ac) 
         ⇒         x ∈B    (by definition of Bc) 
  But x is an arbitrary element of A. 
         ∴ A ⊆ B    (proved) 
EXAMPLE 2: 
 Let A and B be subsets of a universal set U.  
  Prove that A – B = A ∩ Bc. 
SOLUTION 
   Let x ∈ A – B 

⇒  x ∈A and x ∉ B (definition of set difference) 
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⇒  x ∈A and x ∈ Bc (definition of complement) 
⇒  x ∈ A ∩ Bc   (definition of intersection) 

 But x is an arbitrary element of A – B so we can write 
   ∴ A – B ⊆ A ∩ Bc………….(1) 
 Conversely,  
   let y ∈ A ∩ Bc 

⇒ y ∈A and y ∈ Bc   (definition of intersection) 
⇒ y ∈A and y ∉ B  (definition of complement) 
⇒ y ∈A – B   (definition of set difference) 

 But y is an arbitrary element of A ∩ Bc 
  ∴ A ∩ Bc ⊆ A – B…………. (2) 
 From (1) and (2) it follows that 
   A – B = A ∩ Bc (as required) 
EXAMPLE 3: 
 Prove the DeMorgan’s Law:  (A ∪ B)c = Ac ∩ Bc 
PROOF 
  Let x ∈(A∪B) c 

⇒   x ∉ A∪B  (definition of complement) 
  x ∉A and x ∉ B   (DeMorgan’s Law of Logic) 

⇒ x ∈Ac and x ∈ Bc (definition of complement) 
⇒ x ∈Ac ∩ Bc  (definition of intersection)  

 But x is an arbitrary element of (A∪B) c so we have proved that  
    ∴ (A ∪ B) c ⊆ Ac ∩ Bc………(1) 
 Conversely 
    let y ∈ Ac ∩ Bc 

⇒ y ∈Ac and y ∈ Bc  (definition of intersection) 
⇒ y ∉A and y ∉ B  (definition of complement) 
⇒ y ∉A ∪ B   (DeMorgan’s Law of Logic) 
⇒ y ∈(A ∪ B) c   (definition of complement) 

 But y is an arbitrary element of Ac ∩ Bc 
∴  Ac ∩ Bc ⊆ (A ∪ B) c………………(2) 

 From (1) and (2) we have 
  (A ∪ B) c =  Ac ∩ Bc   
 Which is the DeMorgan`s Law. 
EXAMPLE 4: 
 Prove the associative law: A ∩ (B ∩ C) = (A ∩ B) ∩ C 
PROOF:  
  Consider x ∈A ∩ (B ∩ C) 

⇒ x ∈A and x ∈ B ∩ C  (definition of intersection) 
⇒ x ∈A and x ∈B and x ∈ C  (definition of intersection) 
⇒ x ∈A ∩ B and x ∈C              (definition of intersection) 
⇒ x ∈(A ∩ B) ∩ C   (definition of intersection) 

 But x is an arbitrary element of A ∩ (B ∩ C) 
   ∴ A ∩ (B ∩ C) ⊆ (A ∩ B) ∩ C……(1) 
 Conversely 
  let y ∈(A ∩ B) ∩ C 

⇒ y ∈ A ∩ B and y ∈C  (definition of intersection) 
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⇒ y ∈ A and y ∈ B and y ∈ C (definition of intersection) 
⇒ y ∈ A and y ∈ B ∩ C  (definition of intersection) 
⇒ y ∈A ∩ (B ∩ C)  (definition of intersection) 

 But y is an arbitrary element of (A ∩ B) ∩ C 
∴ (A ∩ B) ∩ C ⊆ A ∩ (B ∩ C)……..(2) 

 From (1) & (2), we conclude that 
   A ∩ (B ∩ C) = (A ∩ B) ∩ C  (proved) 
EXAMPLE 5: 
 Prove the distributive law:   A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) 
PROOF: 
  Let x ∈A ∪ (B ∩ C) 

⇒ x ∈A or x ∈ B ∩ C  (definition of union) 
 Now since we have x ∈A or x ∈ B ∩ C it means that either x is in A or in A ∩ B 
 it is in the A ∪ (B ∩ C) so in order  to show that 
  A ∪ (B ∩ C) is the subset of (A ∪ B) ∩ (A ∪ C) we will consider both the cases 
 when x is in  A or x is in B ∩ C. So we will consider the two cases.  
 CASE I:   
   (when x ∈A) 
   ⇒ x ∈A ∪ B and x ∈A ∪ C  (definition of union) 
 Hence, 
  x ∈ (A ∪ B) ∩ (A ∪ C) (definition of intersection) 
 
 CASE II:  
   (when x ∈ B ∩ C) 
 We have x ∈B and x ∈C  (definition of intersection) 
 Now x ∈B ⇒ x ∈A ∪ B  (definition of union) 
 and x ∈C ⇒ x ∈A ∪ C  (definition of union) 
 Thus x ∈A ∪ B and x ∈A ∪ C 

⇒  x ∈(A ∪ B) ∩ (A ∪ C) 
 In  both of the cases x ∈ (A ∪ B) ∩ (A ∪ C) 
 Accordingly, 
   A ∪ (B ∩ C) ⊆ (A ∪ B) ∩ (A ∪ C)……..(1) 
Conversely, 
  Suppose x ∈(A ∪ B) ∩ (A ∪ C) 

⇒  x ∈(A ∪ B) and x ∈(A ∪ C)  (definition of intersection) 
 Consider the two cases x ∈A and x ∉A 
 CASE I: (when x ∈A) 
 We have x ∈A ∪ (B ∩ C)  (definition of union) 
 CASE II: (when x ∉A) 
 Since x ∈A ∪ B and x ∉A, therefore x ∈B 
 Also, since x ∈A ∪ C and x ∉A, therefore x ∈C. Thus x ∈B and x ∈C 
 That is, x ∈B ∩ C 

⇒  x ∈A ∪ (B ∩ C)  (definition of union) 
 Hence in both cases 
       x ∈A ∪ (B ∩ C) 
  ∴(A ∪ B) ∩ C (A ∪ C) ⊆ A ∪ (B ∩ C)……..(2) 
 By (1) and (2), it follows that 
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 A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)  (proved) 
EXAMPLE 6: 
 For any sets A and B if A ⊆ B then  

(a) A ∩ B = A   (b) A ∪ B = B 
SOLUTION: 

(a) Let x ∈A ∩ B 
⇒ x ∈A and x ∈B  
⇒ x ∈A (in particular) 

   Hence A ∩ B ⊆ A…………..(1) 
 
 Conversely,  
   let x ∈A. 
   Then x ∈B   (since A ⊆ B) 
   Now x ∈A and x ∈B, therefore x ∈A ∩ B 
   Hence, A ⊆ A ∩ B…………..(2) 
   From (1) and (2) it follows that 
    A = A ∩ B    (proved) 

(b) Prove that A ∪ B = B when A ⊆ B 
 
SOLUTION: 
   Suppose that A ⊆ B. Consider x ∈A ∪ B. 
 CASE I (when x ∈A) 
  Since A ⊆ B, x ∈A ⇒ x ∈B 
 CASE II (when x ∉A) 
  Since x ∈A ∪ B, we have x ∈B 
 Thus x ∈B in both the cases, and we have 
  A ∪ B ⊆ B……………(1) 
 Conversely 
    let x ∈B. Then clearly, x ∈A ∪ B 
  Hence B ⊆ A ∪ B…………….(2) 
  Combining (1) and (2), we deduce that 
  A ∪ B = B  (proved) 
USING SET IDENTITIES: 
 For all subsets A and B of a universal set U, prove that 
    (A – B) ∪ (A ∩ B) = A 
PROOF: 
  LHS  = (A – B) ∪ (A ∩ B)  
   = (A ∩ Bc) ∪ (A ∩ B) (Alternative representation for set  
        difference) 
   = A ∩ (Bc ∪ B)  Distributive Law 
   = A ∩ U   Complement Law 
   = A    Identity Law 
   = RHS    (proved) 
 The result can also be seen by Venn diagram. 
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U

A-B

A B

A ∩ B
 

 
EXAMPLE 7: 
 For any two sets A and B prove that A – (A – B) = A ∩ B 
SOLUTION 
   LHS =  A – (A – B) 
                   = A – (A ∩ Bc)    Alternative representation for set difference 
                   = A ∩ (A ∩ Bc) c Alternative representation for set difference 
                   = A ∩ (Ac ∪ (Bc) c)      DeMorgan’s Law 
                   = A ∩ (Ac ∪ B)         Double Complement Law 
                   = (A ∩ Ac) ∪ (A ∩ B) Distributive Law 
                  = ∅ ∪ (A ∩ B)  Complement Law 
                  = A ∩ B   Identity Law 
                   = RHS   (proved) 
 
EXAMPLE 8: 
 For all set A, B, and C prove that (A – B) – C = (A – C) – B  
SOLUTION 
   LHS = (A – B) – C  
                  = (A ∩ Bc) – C  Alternative representation of set difference 
                   = (A ∩ Bc) ∩ Cc Alternative representation of set difference 
                   = A ∩ (Bc ∩ Cc)  Associative Law 
                                            = A ∩ (Cc ∩ Bc)  Commutative Law 
                                            = (A ∩ Cc) ∩ Bc  Associative Law 
                   = (A – C) ∩ Bc Alternative representation of set difference 
                   = (A – C) – B Alternative representation of set difference 
                  = RHS  (proved) 
 
EXAMPLE 9: 
  Simplify  (Bc ∪ (Bc – A)) c 
SOLUTION 
   (Bc ∪ (Bc – A)) c = (Bc ∪ (Bc ∩ Ac)) c          
    Alternative representation  for set difference 
            = (Bc) c∩ (Bc ∩ Ac) c          DeMorgan’s Law 
                                          = B ∩ ((Bc)c ∪ (Ac)c)        DeMorgan’s Law 
                                          = B ∩ (B ∪ A)       Double Complement Law 
            = B             Absorption Law 
 which is the simplified form of the given expression. 
 
PROVING SET IDENTITIES BY MEMBERSHIP TABLE: 
  Prove the following using Membership Table: 

(i) A – (A – B) = A ∩ B 
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(ii) (A ∩ B)c = A c  ∪ B c  
(iii) A – B = A ∩ B c  

   
Solution (i):  A – (A – B) = A ∩ B  
 
 
 
 
 
 
 
 
 
Solution (ii):  (A ∩ B)c = A c  ∪ B c  
 

A B A ∩ B (A ∩ B) c A c B c A c  ∪ B c 

1 1 1 0 0 0 0 
1 0 0 1 0 1 1 
0 1 0 1 1 0 1 
0 0 0 1 1 1 1 

 
Solution (iii):  A – B = A ∩ B c  
 
 
 
 
 
 
 
 
 

A B A-B A-(A-B) A∩B
1 1 0 1 1 
1 0 1 0 0 
0 1 0 0 0 
0 0 0 0 0 

A B A – B B c A ∩ B c 
1 1 0 0 0 
1 0 1 1 1 
0 1 0 0 0 
0 0 0 1 0 
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Lecture No.10   Applications of Venn diagram 

Exercise: 
       A number of computer users are surveyed to find out if they have a 
 printer, modem or scanner. Draw separate Venn  diagrams and shade the areas, 
 which represent the following configurations. 
 

1. modem and printer but no scanner 
2. scanner but no printer and no modem 
3. scanner or printer but no modem. 
4. no modem and no printer. 

  
SOLUTION 
   Let 
     P represent the set of computer users having printer. 
         M represent the set of computer users having modem. 
         S represent the set of computer users having scanner. 
SOLUTION (i) 
 
Modem and printer but no Scanner is shaded. 
 

 

 
SOLUTION (ii) 
 
Scanner but no printer and no modem is shaded. 

 
 

SOLUTION (iii) 
Scanner or printer but no modem is shaded. 
 

 
 
 
 
 
 
 
 

US M

P

S
M

P

U

U

S M

P
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SOLUTION (iv) 
No modem and no printer is shaded. 
 

 

 
 
EXERCISE:  
                   Of 21 typists in an office, 5 use all manual typewriters (M),  electronic 
typewriters (E) and word processors (W); 9 use E and W; 7 use M and W; 6 use M 
and E; but no one uses M only. 
 (i)   Represent this information in a Venn Diagram. 
 (ii)  If the same number of typists use electronic as use     
  word processors, then 

1. (a) How many use word processors only,   
2. (b) How many use electronic typewriters? 

SOLUTION (i) 
 

M E

W

0
1

2 4
5

 
 
SOLUTION (ii-a) 

Let the number of typists using electronic typewriters (E) only be x, and the 
 number of typists using word processors (W) only be y. 

 
 

 
 Total number of typists using E = Total Number of typists  using W 
        1 + 5  + 4 + x = 2 + 5 + 4 + y 
  or,   x – y = 1   ………….(1) 
 Also, total number of typists = 21 

⇒  0 + x + y + 1 + 2 + 4 + 5 = 21 

MS

P

U

M E

W

0 1

2 4
5

x

y
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 or,  x + y = 9   …………. (2) 
 Solving (1) & (2), we get 
    x = 5,  y = 4 

∴ Number of typists using word processor only is y = 4 
 
(ii)-(b) How many typists use electronic typewriters? 
 
SOLUTION: 
 Typists using electronic typewriters = No. of elements in E 
     = 1 + 5  + 4 + x 
     = 1 + 5 + 4 + 5 
     = 15 
EXERCISE 
   In a school, 100 students have access to three software packages,  
   A, B and C 
   28 did not use any software 
   8 used only packages A 
   26 used only packages B 
   7 used only packages C 
   10 used all three packages 
   13 used both A and B 

(i) Draw a Venn diagram with all sets enumerated as for as possible. 
Label the two subsets which cannot be enumerated as x and y, in any 
order. 

(ii) If twice as many students used package B as package A, write down a 
pair of simultaneous equations in x and y. 

(iii) Solve these equations to find x and y. 
(iv) How many students used package C? 

 
SOLUTION(i) 
  
   Venn Diagram with all sets enumerated.  
 

A B

C

8
3

x y10
26

728  
 
  
 (ii) If twice as many students used package B as package A, write down a   
 pair of simultaneous equations in x and y. 
 
SOLUTION(ii): 
    We are given that 
 Number of  students using package B = 2 (Number of students using package A) 
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 Now the number of students which used  package B and A  are clear from the 
 diagrams given below. So we have the following equation 

 
⇒  3 + 10 + 26 + y =  2 (8 + 3 + 10 + x) 
⇒  39 + y  =  42 + 2x 

   or y          =  2x + 3 …………(1) 
 Also, total number of students = 100.  
  Hence, 8 + 3 + 26 + 10 + 7 + 28 + x + y = 100 
          or    82 + x + y = 100 
   or x + y = 18    …………(2) 

(iii)Solving simultaneous equations for x and y. 
 
SOLUTION(iii): 
         y = 2x + 3  ………………(1)   
   x + y = 18  ………………(2) 
 Using (1) in (2), we get, 
    x + (2 x + 3)  =18 
   or            3x + 3 =18 
                                    or                  3x =15 
                                                                   x = 5  
 Consequently            y= 13  

How many students used package C? 
SOLUTION (iv) : 
  No. of students using package C 
      = x + y + 10 + 7 
      = 5 + 13 + 10 + 7 
      =  35 
EXAMPLE: 
   Use diagrams to show the validity of the following argument: 
   All human beings are mortal 
   Zeus is not mortal 
  ∴ Zeus is not a human being 
 
SOLUTION: 
   The premise “All human beings are mortal is pictured by  placing 
 a disk labeled “human beings” inside a disk labeled  “mortals". We place the disk 
 of human Beings in side the  Disk of mortals because there are things which are 
 mortal but not Human beings so the set of human beings is subset of set of 
 Mortals. 

mortals

human
beings
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 The second premise “Zeus is not mortal” could be pictured  by placing a dot 
 labeled “Zeus” outside the disk labeled “mortals” 
 

mortals

human
beings

• Zeus

 
Argument is valid. 
 
EXAMPLE:  
   Use a diagram to show the invalidity of the following   
 argument: 
  All human beings are mortal. 
  Farhan is mortal 
 ∴ Farhan is a human being 
SOLUTION: 
  The first premise “All human beings are mortal” is pictured as: 
 

mortals

human
beings

 
 
 
 The second premise “Farhan is mortal” is represented by a dot labeled “Farhan” 
 inside the mortal disk in either of the  following two ways: 
 

mortals

human
beings

mortals

human
beingsFarhan •

Farhan •

 
 
argument is invalid. 
 
 EXAMPLE 
   Use diagrams to test the following argument for validity: 
  No polynomial functions have horizontal asymptotes. 
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  This function has a horizontal asymptote. 
  ∴ This function is not polynomial. 
 
SOLUTION 
   The premise “No polynomial functions have horizontal 
 asymptotes” can be represented diagrammatically by twodisjoint disks labeled 
 “polynomial functions” and “functions  with horizontal tangents. 
 

 

 
 
The argument is valid. 
 
 
EXERCISE: 
   Use a diagram to show that the following argument can have 
 true premises and a false conclusion. 
   All dogs are carnivorous. 
   Jack is not a dog. 
  ∴ Jack is not carnivorous 
SOLUTION: 
   The premise “All dogs are carnivorous” is pictured by placing 
 a disk labeled “dogs” inside a disk labeled “carnivorous”. : 
 

carnivorous

dogs

 
  
 The second premise “Jack is not a dog” could be represented by placing a  dot 
outside the disk labeled “dogs” but inside the disk labeled “carnivorous” to make the 
conclusion “Jack is not carnivorous” false. 
 

carnivorous

dogs
Jack •

 

polynomial
functions

functions 
with 
horizontal
asymptotes
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EXERCISE: 
 
   Indicate by drawing diagrams, whether the argument is valid 
 or invalid. 
  No college cafeteria food is good. 
  No good food is wasted. 
 ∴ No college cafeteria food is wasted. 
 
SOLUTION 
   The premise “No college food is good” could be  represented by 
 two disjoint disks shown below. 
 

college 
cafeteria
food

good 
food

 
 The next premise “No good food is wasted” introduces another disk labeled 
 “wasted food” that does not overlap the disk labeled “good food”, but may 
 intersect with the disk labeled “college cafeteria food.” 
 
 

college
cafeteria 
food

wasted food

good food

 
Argument is  invalid 

PARTITION OF A SET 
 A set may be divided up into its disjoint subsets. Such  division is called a 
 partition. 
 More precisely, 
   A partition of a set A is a collection of non- empty subsets  
 {A1, A2, …An} of A, such that 

1. A = A1 ∪, A2 ∪ … ∪ An 
2. A1, A2, …, An are mutually disjoint (or pair wise disjoint),  

   i.e., ∀ i, j = 1, 2, …, n Ai ∩ Aj = ∅ whenever i ≠ j 
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A1

A2

A3

A4

A partition of a set  
 
POWER SET: 
 The power set of a set A is the set of all subsets of A, denoted P(A). 
EXAMPLE: 
   Let A = {1, 2}, then  
   P(A) = {∅, {1}, {2}, {1, 2}} 
REMARK: 
   If A has n elements then P(A) has 2

n elements. 
EXERCISE 

a. Find P(∅)   b.   Find P(P(∅)) c.   Find  P(P(P(∅))) 
SOLUTION: 

 a.     Since ∅ contains no element, therefore P(∅) will contain 2
0
=1 element. 

                P(∅) = {∅} 
                   b. Since P(∅) contains one element, namely φ, therefore P(∅) will contain 2

1
     

                                   = 2 elements 
          P(P(∅)) = {∅,{∅}} 

c.  Since P(P(∅)) contains two elements, namely ∅ and {∅}, so P(P(P(∅)))      
     will contain 2

2 = 4 elements. 
              P(P(P(∅)))= {∅,{∅},{{∅}}, {∅,{∅}}} 
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Lecture No.11   Relations 
 
 
ORDERED PAIR:  
 An ordered pair (a, b) consists of two elements “a” and “b” in which “a” is the 
 first element and “b” is the second element. 
 The ordered pairs (a, b) and (c, d) are equal if, and only if, a= c and b = d. 
 Note that (a, b) and (b, a) are not equal unless a = b. 
EXERCISE: 
  Find x and y given (2x, x + y) = (6, 2) 
SOLUTION:  
    Two ordered pairs are equal if and only if the 
 corresponding components are equal. Hence, we obtain the equations: 
        2x = 6  ………………(1) 
  and  x + y = 2     ……………..(2) 
 Solving equation (1) we get x = 3 and when substituted in (2) we get y = -1. 
 
ORDERED n-TUPLE: 
 The ordered n-tuple (a1, a2, …, an) consists of elements a1, a2, …, an together with 
 the ordering: first a1, second a2, and so forth up to an. In particular, an ordered 2-
 tuple is called an  ordered pair, and an ordered 3-tuple is called an ordered  triple. 
  Two ordered n-tuples (a1, a2, …, an) and (b1, b2, …, bn) are equal if 
 and only if each corresponding pair of their elements is equal, i.e., ai = bj, for all  
 i, j = 1, 2, …, n. 
 
CARTESIAN PRODUCT OF TWO SETS: 
 Let A and B be sets. The Cartesian product of A and B, denoted by A × B (read 
 as “A cross B”) is the set of all ordered pairs (a, b), where a is in A and b is in B. 
  Symbolically: 
     A × B = {(a, b)| a ∈ A and b ∈ B} 
NOTE: If set A has m elements and set B has n elements then A ×B has m × n elements. 
 
EXAMPLE: 
   Let A = {1, 2}, B = {a, b, c} then 
  A × B = {(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)} 
  B × A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)} 
  A × A = {(1, 1), (1,2), (2, 1), (2, 2)} 
  B × B = {(a, a), (a, b), (a, c), (b, a), (b, b), (b, c), (c, a), (c, b),(c, c)} 
REMARK:     

1. A × B ≠ B × A for non-empty and unequal sets A and B. 
2. A × φ = φ × A = φ 
3. | A × B| = |A| × |B| 

 
 
 
 



11-Relations      VU                       
 

 
 

 
© Copyright Virtual University of Pakistan 

74

CARTESIAN PRODUCT OF MORE THAN TWO SETS: 
 The Cartesian product of sets A1, A2, …, An, denoted A1× A2 × … ×An, is the set 
 of all ordered n-tuples (a1, a2, …, an) where a1 ∈A1, a2 ∈A2,…, an ∈An. 
 Symbolically: 
  A1× A2 × … ×An ={(a1, a2, …, an) | ai ∈Ai, for i =1, 2, …, n} 
 
BINARY RELATION: 
 Let A and B be sets. The binary relation R from A to B is a  subset of A × B. 
 When (a, b) ∈R, we say ‘a’ is related to ‘b’ by R, written aRb. 
 Otherwise, if (a, b) ∉R, we write  a R b.  
 
EXAMPLE: 
  Let A = {1, 2}, B = {1, 2, 3} 
 Then A × B = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3)} 
 Let  
  R1={(1,1), (1, 3), (2, 2)} 
  R2={(1, 2), (2, 1), (2, 2), (2, 3)} 
  R3={(1, 1)} 
  R4= A × B   
  R5= ∅    
 All being subsets of A × B are relations from A to B. 
 
DOMAIN  OF A RELATION: 
 The domain of a relation R from A to B is the set of all first elements of the 
ordered pairs which belong to R denoted by Dom(R). 
  Symbolically,  
    Dom (R) = {a ∈A | (a, b) ∈R} 
 
RANGE OF A RELATION: 
 The range of a relation R from A to B is the set of all second elements of the 
ordered pairs which belong to R denoted Ran(R). 
  Symbolically,   
    Ran(R) = {b ∈B | (a, b) ∈ R} 
EXERCISE: 
  Let A = {1, 2},  B = {1, 2, 3}, 
  Define a binary relation R from A to B as follows: 
    R = {(a, b) ∈A × B | a < b} 
 Then 

a. Find the ordered pairs in R. 
b. Find the Domain and Range of R. 
c. Is 1R3, 2R2? 

SOLUTION: 
 
 Given  A = {1, 2},  B = {1, 2, 3}, 
  A × B = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)} 

a.    R = {(a, b) ∈A × B | a < b} 
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   R = {(1,2), (1,3), (2,3)} 
       b.    Dom(R) = {1,2} and Ran(R) = {2, 3} 

c.    Since (1, 3)∈R so 1R3 
  But (2, 2) ∉R so 2 is not related with3 or 2 R 2  
  
EXAMPLE: 
           Let A = {eggs, milk, corn} and B = {cows, goats, hens} 
           Define a relation R from A to B by (a, b) ∈R iff a is produced by b. 
           Then R = {(eggs, hens), (milk, cows), (milk, goats)} 
           Thus, with respect to this relation  eggs R hens , milk R cows,  etc. 
  
EXERCISE : 
            Find all binary relations from {0,1} to {1} 
SOLUTION:  
  Let A = {0,1} & B = {1} 
  Then  A × B = {(0,1), (1,1)} 
            All binary relations from A to B are in fact all subsets of  
            A ×B, which are: 
    R1= ∅ 
    R2={(0,1)} 
    R3={(1,1)} 
    R4={(0,1), (1,1)} = A × B 
 
REMARK: 
         If |A| = m and |B| = n 
 Then as we know that the number of elements in A × B are m × n. Now as we 
 know that the total number of and the total number of relations from A to B are 
 2

m × n
. 

 
RELATION ON A SET: 
 A relation on the set A is a relation from A to A. 
 In other words, a relation on a set A is a subset of A × A. 
 
EXAMPLE:  
  Let A = {1, 2, 3, 4} 
  Define a relation R on A as 
           (a,b) ∈ R iff a divides b {symbolically written as a | b}  
  Then R = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)}  
REMARK: 
  
For any set A 

1. A × A is known as the universal relation. 
        2.  ∅ is known as the empty relation.  
  
 
EXERCISE: 
  Define a binary relation E on the set of the integers Z, as follows: 
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       for all m,n ∈Z, m E n ⇔ m – n is even. 
a. Is 0E0? Is 5E2? Is (6,6) ∈E? Is (-1,7) ∈E? 
b. Prove that for any even integer n, nE0. 

 
SOLUTION 
           E = {(m, n) ∈Z ×Z | m – n is even} 
            a.      (i) (0,0) ∈ Z ×Z and 0-0 = 0  is even 
   Therefore 0E0. 
         (ii)  Since (5,2)∈Z ×Z  but 5-2 = 3 is not even  
   so 5 E 2  

   (iii)  (6,6) ∈ E  since 6-6 = 0  is an even integer. 
   (iv)  (-1,7) ∈E  since (-1) – 7 = -8 is an even integer. 

           b.       For any even integer, n, we have 
  n – 0 = n, an even integer 
  so (n, 0) ∈E  or equivalently n E 0 
 
COORDINATE DIAGRAM (GRAPH) OF A RELATION: 
 
 Let A = {1, 2, 3} and B = {x, y} 
 Let R be a relation from A to B defined as  
    R = {(1, y), (2, x), (2, y), (3, x)} 
 The relation may be represented in a coordinate diagram as  follows: 
 

x

y
B

1 2 3
A  

  
EXAMPLE: 
  Draw the graph of the binary relation C from R to R defined as follows: 
   for all (x, y) ∈R × R, (x, y) ∈C ⇔ x2 + y2 = 1 
SOLUTION 
        All ordered pairs (x, y) in relation C satisfies the equation x2+y2=1,  
            which when solved for y gives: 
       Clearly y is real, whenever –1 ≤ x ≤ 1 
       Similarly x is real, whenever –1 ≤ y ≤ 1 
 Hence the graph is limited in the range –1 ≤ x ≤ 1 and –1 ≤ y ≤ 1 
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The graph of relation is
y

(0,1)

(0,0)(-1,0)

(1,0)

(0,-1)
 

 
 
 
 
 
ARROW DIAGRAM OF A RELATION: 
 Let  
  A = {1, 2, 3}, B = {x, y} and 
  R = {1,y), (2,x), (2,y), (3,x)}  
 be a relation from A to B.  
 The arrow diagram of R is: 
 

 

 
DIRECTED GRAPH OF A RELATION: 
 Let A = {0, 1, 2, 3} 
 and R = {(0,0), (1,3), (2,1), (2,2), (3,0), (3,1)}  
 be a binary relation on A. 
 
 

1

2

0

3

DIRECTED GRAPH  
 

1

2

3

x

y

A B

R
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MATRIX REPRESENTATION OF A RELATION  
 Let  A = {a1, a2, …, an} and B = {b1, b2, …, bm}. Let R be a relation from A 
to B. Define the n × m order matrix M by 
 

⎩
⎨
⎧

∉
∈

=
Rba
Rba

jim
ii

ii

),(  if  0
),(  if  1

),(

for i=1,2,…,n and j=1,2,…,m  
 
EXAMPLE: 
           Let A = {1, 2, 3} and B = {x, y} 
           Let R be a relation from A to B defined as  
   R ={(1,y), (2,x), (2,y), (3,x)} 
 
 
 
  
 
 
EXAMPLE: 
           For the relation matrix. 
 
 
 
 
 
 

1. List the set of ordered pairs represented by M. 
2. Draw the directed graph of the relation. 

  
SOLUTION: 
  The relation corresponding to the given Matrix is 

• R = {(1,1), (1,3), (2,1), (3,2), (3,3)} 
 
 And its Directed graph is given below 
 

1 2

3

 
  
  
 
 

23
01
11
10

3
2
1

             

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=M

yx

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

110
001
101

3
2
1

321             

M
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EXERCISE: 
  Let A = {2, 4} and B = {6, 8, 10} and define relations R and S from A to 
B as follows:   
                        for all (x,y) ∈A × B, x R y ⇔ x | y 
  for all (x,y) ∈A × B, x S y ⇔ y – 4 = x 
 State explicitly which ordered pairs are in A × B, R, S, R∪S and R∩S. 
 
SOLUTION 
   A × B = {(2,6), (2,8), (2,10), (4,6), (4,8), (4,10)} 
          R = {(2,6), (2,8), (2,10), (4,8)} 
         S = {(2,6), (4,8)} 
  R ∪ S = {(2,6), (2,8), (2,10), (4,8)}= R 
  R ∩ S = {(2,6), (4,8)}= S 
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Lecture No.12   Types of Relations 
 
REFLEXIVE RELATION:  
 Let R be a relation on a set A. R is reflexive if and only if,  for all a ∈ A,  
 (a, a) ∈R  or equivalently aRa. That is, each element of A is related to itself. 
 
REMARK 
         R is not reflexive iff there is an element “a” in A such that  
        (a, a) ∉R. That is, some  element “a” of A is not related to itself. 
 
EXAMPLE: 
       Let A = {1, 2, 3, 4} and define relations R1, R2, R3, R4 on A as follows: 
   R1 = {(1, 1), (3, 3), (2, 2), (4, 4)} 
   R2 = {(1, 1), (1, 4), (2, 2), (3, 3), (4, 3)} 
   R3 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} 
   R4 = {(1, 3), (2, 2), (2, 4), (3, 1), (4, 4)} 
 Then, 
  R1 is reflexive, since (a, a) ∈R1 for all a ∈A. 
  R2 is not reflexive, because (4, 4) ∉R2. 
  R3 is reflexive, since (a, a) ∈R3 for all a ∈A. 
  R4 is not reflexive, because (1, 1) ∉R4, (3, 3) ∉R4 
 
DIRECTED GRAPH OF A REFLEXIVE RELATION: 
 
 The directed graph of every reflexive relation includes an arrow from every point 
 to the point itself (i.e., a loop). 
 
EXAMPLE : 
 
Let A = {1, 2, 3, 4} and define relations R1, R2, R3, and R4 on A by     
  R1 = {(1, 1), (3, 3), (2, 2), (4, 4)} 
  R2 = {(1, 1), (1, 4), (2, 2), (3, 3), (4, 3)} 
  R3 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3), (4, 4)} 
  R4 = {(1, 3), (2, 2), (2, 4), (3, 1), (4, 4)} 
 
Then their directed graphs are the following: 
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MATRIX REPRESENTATION OF A REFLEXIVE RELATION: 
 Let A = {a1, a2, …, an}. A Relation R on A is reflexive if and only if  
 (ai, aj) ∈R ∀ i=1,2, …,n.     
 Accordingly, R is reflexive if all the elements on the main  diagonal of the 
 matrix M representing R are equal to 1. 
 
EXAMPLE:  
        The relation R = {(1,1), (1,3), (2,2), (3,2), (3,3)} on A = {1,2,3} 
 represented by the following matrix M, is reflexive. 
 
 
 
 
 
SYMMETRIC RELATION 
  
 Let R be a relation on a set A. R is symmetric if, and only if,   
 for all a, b ∈ A, if (a, b)∈R,  then (b, a) ∈R.                       
  That is, if aRb then bRa. 
REMARK 
  R is not symmetric iff there are elements a and b in A such that (a, b) ∈R,  but   
(b, a) ∉R.  
 

R1 is reflexive because at 
every point of the set A we 
have a loop in the graph.

R2 is not reflexive, as there 
is no loop at 4.

1 2

34

1 2

34

R3 is reflexive
R4 is not reflexive, as there are 
no loops at 1and 3.

1 2

34

1 2

3
4

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

110
010
101

3
2
1

321            

M
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EXAMPLE 
                   Let A = {1, 2, 3, 4} and define relations R1, R2, R3, and R4on A as 
 follows. 
  R1 = {(1, 1), (1, 3), (2, 4), (3, 1), (4,2)} 
  R2 = {(1, 1), (2, 2), (3, 3), (4, 4)} 
  R3 = {(2, 2), (2, 3), (3, 4)} 
  R4 = {(1, 1), (2, 2), (3, 3), (4, 3), (4, 4)} 
 
 Then R1 is symmetric because for every order pair (a, b) in R1also have (b, a) in 
 R1. For example, we have (1, 3) in R1 then we have (3, 1) in R1. Similarly all other 
 ordered pairs can be checked. 
 R2 is also symmetric. We say it is vacuously true. 
 R3 is not symmetric, because (2,3) ∈ R3 but (3,2) ∉ R3.     
 R4 is not symmetric because (4,3) ∈ R4 but (3,4) ∉ R4. 

 
DIRECTED GRAPH OF A  SYMMETRIC RELATION 
 
 For a symmetric directed graph whenever there is an arrow  going from one point 
 of the graph to a second, there is an arrow going from the second point back to 
 the first. 
 
EXAMPLE 
 Let A = {1, 2, 3, 4} and define relations R1,  R2,  R3 and R4 on A by the directed 
graphs: 
  R1 = {(1, 1), (1, 3), (2, 4), (3, 1), (4,2)} 
  R2 = {(1, 1), (2, 2), (3, 3), (4, 4)} 
  R3 = {(2, 2), (2, 3), (3, 4)} 
  R4= {(1, 1), (2, 2), (3, 3), (4, 3), (4, 4)} 
 
 
 

1
2

3
4

R1 is symmetric

1 2

34
R2 is symmetric  
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MATRIX REPRESENTATION OF A SYMMETRIC RELATION 
 Let 
   A = {a1, a2, …, an}.  
 The relation R on A is symmetric if  and only if for all ai, aj ∈ A,  
                                            if (ai, aj) ∈R then (aj, ai)∈R.  
 Accordingly, R is symmetric if the elements in the ith row are the same as the 
elements in the ith column of the matrix M representing R. More precisely, M is a 
symmetric matrix i.e.  M = M

t 
 

EXAMPLE: 
                  The relation R = {(1,3), (2,2), (3,1), (3,3)}     
       on A = {1,2,3} represented by the following matrix M is symmetric. 

 
 
 
  
 
 
TRANSITIVE RELATION 
 Let R be a relation on a set A. R is transitive if and only if for all a, b, c ∈A, 
  if (a, b) ∈R and (b, c) ∈R then  (a, c) ∈R.  
 That is, if aRb and bRc then aRc. 
     In words, if any one element is related to a second 
 and that second element is related to a third, then the first is related to the third. 
 Note: The “first”, “second” and “third” elements need not to be distinct. 
 
 
 
REMARK 
        R is not transitive iff  there are elements a, b, c in A such that  

R3 is not symmetric since there 
are arrows from 2 to 3 and from 
3 to 4 but not conversely

R4 is not symmetric since 
there is an arrow from 4 to 3 
but no arrow from 3 to 4

1

2

4
3

1 2

4 3

           1 2 3
1 0 0 1
2 0 1 0
3 1 0 1

M
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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   if (a, b) ∈R and (b, c) ∈R but (a, c) ∉R. 
 
EXAMPLE 
       Let A = {1, 2, 3, 4} and define relations R1, R2 and R3 on A as follows: 
   R1 = {(1, 1), (1, 2), (1, 3), (2, 3)} 
   R2 = {(1, 2), (1, 4), (2, 3), (3, 4)} 
   R3 = {(2, 1), (2, 4), (2, 3), (3,4)} 
 Then R1 is transitive because (1, 1), (1, 2) are in R, then to be transitive relation 
 (1,2) must be there and it belongs to R.  
            Similarly for other order pairs. R2 is not transitive since (1,2) and (2,3) ∈ R2 but   
           (1,3) ∉ R2. 
 R3 is transitive. 
 
DIRECTED GRAPH OF A TRANSITIVE RELATION 
 For a transitive directed graph, whenever there is an arrow going from one point 
to the second, and from the second to the third, there is an arrow going directly from the 
first to the third. 
 
EXAMPLE 
       Let A = {1, 2, 3, 4} and define relations R1, R2  and R3 on A by the 
 directed graphs: 
    R1 = {(1, 1), (1, 2), (1, 3), (2, 3)} 
    R2 = {(1, 2), (1, 4), (2, 3), (3, 4)} 
    R3 = {(2, 1), (2, 4), (2, 3), (3,4)} 
 
 
SOLUTION: 
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EXERCISE: 
            Let A = {1, 2, 3, 4} and define the null relation φ and universal relation      
A ×A on A. Test these relations for reflexive, symmetric and transitive properties. 
SOLUTION: 
    
Reflexive: 
                a)   ∅ is not reflexive since (1,1), (2,2), (3,3), (4,4) ∉ ∅. 
                b)   A × A is reflexive since (a,a) ∈ A × A for all a ∈ A. 
Symmetric 
    a)  For the null relation ∅ on A to be symmetric, it must satisfy the implication: 
   if (a,b) ∈ ∅ then (a, b) ∈ ∅. 
  
             Since (a, b) ∈ ∅ is never true, the implication is vacuously true or true by default. 
  Hence ∅ is symmetric. 
 
  b) The universal relation A × A is symmetric, for it contains all ordered pairs     
               of elements of A. Thus,  
  if (a, b) ∈ A × A then  (b, a) ∈ A × A for all a, b in A.  
Transitive 
  a)  The null relation ∅ on A is transitive, because the  implication. 
  if (a, b) ∈ ∅ and (b, c) ∈ ∅ then (a, c) ∈ ∅ is true by default,  
       since the condition (a, b) ∈ ∅ is always false. 
             b)  The universal relation A × A is transitive for it contains all ordered pairs of    
                   elements of A. 
       Accordingly, if (a, b) ∈ A × A  and (b, c) ∈ A × A  then  (a, c) ∈ A × A 
EXERCISE:  
 Let  A = {0, 1, 2} and  
  R = {(0,2), (1,1), (2,0)} be a relation on A. 

1. Is R reflexive? Symmetric? Transitive? 
2. Which ordered pairs are needed in R to make it a reflexive and transitive 

relation. 
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SOLUTION: 
            1.  R is not reflexive, since 0 ∈ A but (0, 0) ∉R and also 2 ∈ A but (2, 2) ∉R. 
                 R is clearly symmetric. 
      R is not transitive, since (0, 2) & (2, 0) ∈ R but (0, 0) ∉R.  
 
           2.   For R to be reflexive, it must contain ordered pairs (0,0) and (2,2). 
      For R to be transitive,  
      we note (0,2) and (2,0) ∈ but (0,0) ∉R.  
      Also (2,0) and (0,2) ∈R but (2,2)∉R. 
      Hence (0,0) and (2,2). Are needed in R to make it a transitive relation. 
 
EXERCISE: 
 Define a relation L on the set of real numbers R be defined as follows: 
   for all x, y ∈R, x L y ⇔ x < y. 

a. Is L reflexive? 
b. Is L symmetric? 
c. Is L transitive? 

SOLUTION: 
      a.         L is not reflexive, because x < x  for any real number x.          

   (e.g. 1 < 1) 
  b. L is not symmetric, because for all x, y ∈R, if  
   x < y then y < x 
    (e.g. 0 < 1 but 1 < 0) 
  c. L is transitive, because for all, x, y, z ∈R, if x < y    
                         and y < z,  then x < z.  
    (by transitive law of order of real numbers). 
EXERCISE: 
 Define a relation R on the set of positive integers Z

+
 as follows: 

    for all a, b ∈Z+, a R b iff a × b is odd. 
 Determine whether the relation is  

a. reflexive  b. symmetric c. transitive 
SOLUTION: 
        Firstly, recall that the product of two positive integers is odd if and only if 
both of them are odd. 

a. reflexive 
  R is not reflexive, because 2 ∈ Z+ but 2 R 2    
             for 2 × 2 = 4 which is not odd. 

b. symmetric 
  R is symmetric, because 
  if a R b then a × b is odd or equivalently b × a is odd                    
   ( b × a = a × b) ⇒ b R a. 

c. transitive 
  R is transitive, because if a R b then a × b is  odd              
             ⇒ both “a” and “b” are odd.  Also bRc means b × c is odd                                                    
             ⇒ both “b” and “c” are odd. 
 Now if aRb and bRc, then all of a, b, c are odd and so a × c  is odd.  Consequently 
 aRc.  
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EXERCISE: 
   Let “D” be the “divides” relation on Z defined as: 
    for all m, n ∈Z, m D n⇔ m|n 
 Determine whether D is reflexive, symmetric or transitive.  Justify your answer. 
  
SOLUTION:                                                                                
 Reflexive                                                                                         
  Let m ∈Z, since every integer divides itself.   
                        So m|m ∀ m ∈Z therefore mDm  ∀ m ∈Z  
             Accordingly D is reflexive 
 
 Symmetric 
   Let m, n ∈ Z and suppose m D n.                                                
 By definition of D, this means m|n (i.e.= an integer) 
       Clearly, then it is not necessary that  = an integer. 
      Accordingly, if m D n then n D m, ∀ m, n ∈Z    
   Hence D is not symmetric.                             
 Transitive 
   Let m, n, p ∈Z and suppose m D n and n D p. 
 Now m D n ⇒ m|n ⇒     = an integer. 
 Also n D p ⇒ n|p ⇒     = an integer. 
  
 We note        =         *            = (an int) *  (an int) 
          
                                 = an int 

⇒  m|p and so mDp 
 Thus if mDn and nDp then mDp ∀ m, n, p ∈Z  
 Hence D is transitive. 
 
EXERCISE: 
           Let A be the set of people living in the world today. A binary relation R is   
defined on A as follows: 
                for all p, q ∈A, pRq ⇔ p has the same first name as q. 
Determine whether the relation R is reflexive, symmetric and/or transitive. 

 
SOLUTION: 

Reflexive 
Since every person has the same first name as his/her self.  
Hence for all p ∈ A, pRp. Thus, R is reflexive. 

Symmetric: 
                                    Let p, q ∈A and suppose pRq. 

p has the same first name as q. 
q has the same first name as p. 
q R p 

   Thus if pRq then qRp ∀ p,q ∈A. 
R is symmetric. 

Transitive 
Let p, q, s ∈A and suppose p R q and qRr. 

m
p

⎟
⎠
⎞

⎜
⎝
⎛

n
p

⎟
⎠
⎞

⎜
⎝
⎛

m
n
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Now pRq ⇔ p has the same first name as q                                            
  and   qRr ⇔ q has the same first name as r.                             
Consequently, p has the same first name as r. 
⇒  pRr 
Thus, if pRq and qRs then pRr, ∀ p, q, r ∈A. 
Hence R is transitive. 

 
EQUIVALENCE RELATION:  
 Let A be a non-empty set and R a binary relation on A. R is  an equivalence 
 relation if, and only if, R is reflexive, symmetric, and transitive. 
EXAMPLE: 
  Let A = {1, 2, 3, 4} and 
  R = {(1,1), (2,2), (2,4), (3,3), (4,2), (4,4)} 
             be a binary relation on A. 
 Note that R is reflexive, symmetric and transitive, hence an  equivalence relation. 
 
CONGRUENCES: 
 Let m and n be integers and d be a positive integer. The notation 
   m ≡ n (mod d) means that 
 d | (m – n) {d divides m minus n}.There exists an integer k  such that  
   (m – n) = d ⋅ k 
EXAMPLE: 

c. Is 22 ≡ 1(mod 3)?  b.         Is –5 ≡ +10 (mod 3)? 
d. Is 7 ≡ 7 (mod 3)?  d. Is 14 ≡ 4 (mod 3)? 

SOLUTION 
a. Since 22-1 = 21 = 3×7.  
Hence 3|(22-1), and so 22 ≡ 1 (mod 3) 
b. Since – 5 – 10 = - 15 = 3 × (-5),  
Hence 3|((-5)-10), and so  - 5 ≡ 10 (mod 3) 
c. Since 7 – 7 = 0 = 3 × 0  
 Hence 3|(7-7), and so 7 ≡ 7 (mod 3) 
d. Since 14 – 4 = 10, and 3 / 10 because 10 ≠ 3⋅ k for any integer 

k. Hence 14 ≡ 4 (mod 3). 
  
EXERCISE: 
 Define a relation R on the set of all integers Z as follows: 
   for all integers m and n, m R n ⇔ m ≡ n (mod 3) 
 Prove that R is an equivalence relation. 
  
SOLUTION: 
R is reflexive. 
                   R is reflexive iff for all m ∈Z, m R m. 
                    By definition of R, this means that 
           For all m ∈Z, m ≡ m (mod 3) 
           Since m – m = 0 = 3 ×0.  
     Hence 3|(m-m), and so m ≡ m (mod 3)  

mRm   
   ⇒ R is reflexive. 
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R is symmetric. 
   R is symmetric iff for all m, n ∈Z  
                         if m R n then n R m. 
                         Now mRn  
                                    ⇒ m≡n (mod 3) 
   ⇒ 3|(m-n) 
   ⇒ m-n = 3k, for some integer k. 
   ⇒ n – m = 3(-k), -k ∈Z 
   ⇒ 3|(n-m) 
   ⇒ n ≡ m (mod 3)  
   ⇒ nRm 
 Hence R is symmetric. 
R is transitive 
 R is transitive iff for all m, n, p ∈Z, 
 if mRn and nRp then mRp 
 Now mRn and nRp means m ≡ n (mod 3) and n ≡ p (mod 3) 

3|(m-n)  and 3|(n-p) 
(m-n) = 3r and (n-p) = 3s  for some r, s ∈Z 

 Adding these two equations, we get, 
 (m – n) + (n – p) = 3 r + 3 s 

m – p = 3 (r + s),where r + s ∈Z 
3|(m – p)  
m ≡ p (mod 3) ⇔ m Rp 

 Hence R is transitive. R being reflexive, symmetric and transitive, is an 
 equivalence relation. 
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Lecture No.13   Matrix Representation of Relations 
 

 
EXERCISE: 

  Suppose R and S are binary relations on a set A.  
a. If R and S are reflexive, is R ∩ S reflexive? 
b. If R and S are symmetric, is R ∩ S symmetric?  
c. If R and S are transitive, is R ∩ S transitive? 

 
SOLUTION: 

a. R ∩ S is reflexive: 
     Suppose R and S are reflexive.                                             
   Then by definition of reflexive relation  

∀ a ∈A  (a,a) ∈R and (a,a) ∈S                                              
⇒ ∀ a ∈ A (a,a) ∈ R ∩ S 
   (by definition of intersection) 

  Accordingly, R ∩ S is reflexive. 
b. R ∩ S is symmetric. 

     Suppose R and S are symmetric. 
  To prove R ∩ S is symmetric we need to show that 

∀ a, b ∈ A, if (a,b) ∈ R ∩ S then (b,a) ∈ R ∩ S. 
  Suppose (a,b) ∈ R ∩ S. 

⇒ (a,b) ∈ R and (a,b) ∈ S  
  ( by the definition of Intersection of two sets ) 

  Since R is symmetric, therefore if (a,b) ∈ R then  
  (b,a) ∈ R. Similarly S is symmetric, so if (a,b) ∈ S then (b,a) ∈ S. 
   Thus  (b,a) ∈ R and (b,a) ∈ S 

⇒ (b,a) ∈ R ∩ S  (by definition of intersection) 
   Accordingly, R ∩ S is symmetric. 

 
c. R∩S is transitive. 

     Suppose R and S are transitive. 
  To prove R∩S is transitive we must show that 

∀ a,b,c, ∈A, if (a,b) ∈ R∩S and (b,c) ∈ R∩S  
 then (a,c) ∈R∩S. 

  Suppose (a,b) ∈R∩S and (b,c) ∈R∩S 
  ⇒  (a,b) ∈R and (a,b) ∈S and (b,c) ∈R and (b,c) ∈S 
  Since R is transitive, therefore                                                    
          if (a,b) ∈R and (b,c) ∈R then (a,c) ∈R.                    
                     Also S is transitive, so (a,c) ∈S                                                                    
          Hence we conclude that (a,c) ∈R and (a,c) ∈S            
             and so (a,c) ∈R∩S (by definition of intersection) 
   Accordingly, R∩S is transitive. 
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EXAMPLE: 
   Let A = {1,2,3,4} 
 and let R and S be transitive binary relations on A defined as: 
   R = {(1,2), (1,3), (2,2), (3,3), (4,2), (4,3)} 
  and  S = {(2,1), (2,4),(3,3)} 
 Then R ∪ S = {(1,2), (1,3), (2,1), (2,2), (2,4), (3,3), (4,2), (4,3)} 
 We note (1,2) and (2,1) ∈R∪S, but (1,1) ∉ R∪S 
  Hence R∪S is not transitive. 
IRREFLEXIVE RELATION: 
 Let R be a binary relation on a set A. R is irreflexive iff  for all a∈A,(a,a) ∉R. 
 That is, R is irreflexive if no element in A is related to itself by R. 
REMARK: 
 R is not irreflexive iff there is an element a∈A such that (a,a) ∈R. 
 
EXAMPLE: 
    Let A = {1,2,3,4} and define the following  relations on A: 
  R1 = {(1,3), (1,4), (2,3), (2,4), (3,1), (3,4)} 
  R2 = {(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)} 
  R3 = {(1,2), (2,3), (3,3), (3,4)} 
 Then R1 is irreflexive since no element of A is related to  itself in R1. i.e.  
 (1,1)∉ R1, (2,2) ∉ R1, (3,3) ∉ R1,(4,4) ∉ R1 
 R2 is not irreflexive, since all elements of A are related to  themselves in R2  
 R3 is not irreflexive since (3,3) ∈R3. Note that R3 is not reflexive.  
  NOTE: 
   A relation may be neither reflexive nor irreflexive. 
DIRECTED GRAPH OF AN IRREFLEXIVE RELATION: 
 Let R be an irreflexive relation on a set A. Then by  definition, no element of A is 
 related to itself by R.  Accordingly, there is no loop at each point of A in the 
 directed graph of R. 
 
EXAMPLE: 
    Let A = {1,2,3}  
 and R = {(1,3), (2,1), (2,3), (3,2)} be represented by the  directed graph. 
 
 

MATRIX REPRESENTATION OF AN IRREFLEXIVE RELATION 
 Let R be an irreflexive relation on a set A. Then by  definition, no element of A is 
 related to itself by R.  
 Since the self related elements are represented by 1’s on the  main diagonal of the 
 matrix representation of the relation, so for irreflexive relation R, the matrix will 
 contain all 0’s in its main diagonal. 

1 2
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 It means that a relation is irreflexive if in its matrix  representation the diagonal 
 elements are all zero, if one of them is not zero the we will say that the relation is   
            not irreflexive. 
 
EXAMPLE: 
   Let A = {1,2,3} and R = {(1,3), (2,1), (2,3), (3,2)}  be represented 
 by the matrix 
 
 
 
 
 
 Then R is irreflexive, since all elements in the main diagonal are 0’s. 
 
EXERCISE: 
   Let R be the relation on the set of integers Z  defined as: 
   for all a,b ∈Z, (a,b) ∈R ⇔ a > b. 
   Is R irreflexive? 
SOLUTION: 
    R is irreflexive if for all a ∈Z, (a,a) ∉R. 
  Now by the definition of given relation R, 
    for all a ∈Z, (a,a) ∉R since a > a. 
  Hence R is irreflexive. 
 
ANTISYMMETRIC RELATION: 
 Let R be a binary relation on a set A.R is anti-symmetric iff                                                            
  ∀a, b ∈A if (a,b) ∈R and (b,a) ∈R then a = b. 
REMARK: 
                   1)    R is not anti-symmetric iff there are elements a and b in A such that           
                           (a, b) ∈R and (b, a) ∈R but a ≠ b. 
                   2)   The properties of being symmetric and being anti-symmetric are not  
                          negative of each other. 
EXAMPLE: 
 Let A = {1,2,3,4} and define the following relations on A. 
 R1 = {(1,1),(2,2),(3,3)}        R2 = {(1,2),(2,2), (2,3), (3,4), (4,1)} 
 R3={(1,3),(2,2), (2,4), (3,1), (4,2)}   R4={(1,3),(2,4), (3,1), (4,3)} 
 R1 is anti-symmetric and symmetric . 
 R2 is anti-symmetric but not symmetric because (1,2) ∈ R2but (2,1) ∉ R2. 
 R3 is not anti-symmetric since (1,3) & (3,1) ∈ R3 but 1 ≠ 3.                 
 Note that R3 is symmetric. 
 R4is neither anti-symmetric  because  (1,3) & (3,1) ∈ R4 but 1 ≠ 3 nor symmetric 

 because (2,4) ∈ R4 but (4,2) ∉R4 
 
DIRECTED GRAPH OF AN  ANTISYMMETRIC RELATION: 
 Let R be an anti-symmetric relation on a set A. Then by definition, no two  distinct 
 elements of A are related to each other. Accordingly, there is no pair of arrows   
            between two distinct elements of A in the directed graph of R. 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

010
101
100

3
2
1

321            

M
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EXAMPLE: 
   Let A = {1,2,3} And R be the relation defined on  A is  
 R ={(1,1), (1,2), (2,3), (3,1)}.Thus R is  represented by the directed graph as 
 

1
2

3  
 R is anti-symmetric, since there is no pair of arrows between two distinct  points 
 in A.   
 
MATRIX REPRESENTATION OF AN ANTISYMMETRIC RELATION:  
 Let R be an anti-symmetric relation on a set 
  A = {a1, a2, …, an}. Then  if (ai, aj) ∈R for i ≠ j then (ai, aj) ∉R.  
 Thus in the matrix representation of R there is a 1  in the ith row and jth column 
 iff the jth row and ith column contains 0 vice versa. 
 
EXAMPLE: 
    Let A = {1,2,3} and a relation  
 R = {(1,1), (1,2), (2,3), (3,1)}on A be represented by the matrix. 
 
 
 
 
 
 Then R is anti-symmetric as clear by the form of matrix M 
 
PARTIAL ORDER RELATION:  
 Let R be a binary relation defined on a set A. R is a partial  order relation,if and 
 only if, R is reflexive, antisymmetric, and transitive. The set A together  with a 
 partial ordering R is  called a partially ordered set or poset. 
 
EXAMPLE: 
    Let R be the set of real numbers and define the“less than or 
 equal to” , on R as follows: 
   for all real numbers x and y in R.x ≤y ⇔ x < y or x = y 
 Show that ≤ is a partial order relation. 
 
SOLUTION: 
     ≤ is reflexive 
   For ≤ to be reflexive means that x ≤ x for all x ∈R 
 But x ≤ x means that x < x or x = x and x = x is always true. 
 Hence under this relation every element is related to itself. 

≤  is anti-symmetric. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

001
100
011

3
2
1

321            

M
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   For ≤ to be anti-symmetric means that                                     
  ∀ x, y ∈R, if x ≤ y and y ≤ x, then x = y.                              
  This follows from the definition of ≤ and the trichotomy property, which says 
 that  
       “given any real numbers x and y, exactly one of the following holds: 
   x < y or x = y or x > y” 

≤ is transitive 
   For ≤ to be transitive means that  
 ∀ x, y, z ∈R, if x≤ y and y ≤ z then x ≤ z. 
 This follows from the definition of ≤ and the transitive property of order of 
 real numbers, which says that “given any real numbers x, y and z,  
   if x < y and y < z then x < z” 
 Thus ≤ being reflexive, anti-symmetric and transitive is a  partial order relation 
 on R. 
 
EXERCISE: 
 
  Let A be a non-empty set and P(A) the power set of A.   
             Define the “subset” relation, ⊆,  as follows: 
  for all X,Y ∈ P(A), X ⊆ Y ⇔ ∀ x, iff x ∈X then x ∈Y. 
 Show that ⊆ is a partial order relation. 
 
SOLUTION: 

1. ⊆ is reflexive 
    Let X ∈ P(A). Since every set is a subset of itself, therefore 
   X ⊆ X, ∀ X ∈P(A). 
 Accordingly ⊆ is reflexive. 

2. ⊆ is anti-symmetric 
 Let X, Y ∈P(A) and suppose X ⊆ Y and Y ⊆ X.Then by definition of equality of 
 two sets it follows that X = Y. 
    Accordingly, ⊆ is anti-symmetric. 

3. ⊆ is transitive 
 Let X, Y, Z ∈P(A) and suppose X ⊆ Y and Y ⊆ Z. Then by the transitive 
 property of subsets “if U ⊆ V and V ⊆ W then U ⊆ W”it follows X ⊆ Z. 
   Accordingly ⊆ is transitive. 
EXERCISE: 
  Let “|” be the “divides” relation on a set A of positive integers.  
            That is, for all a, b ∈A, a|b ⇔ b = k ⋅a for  some integer k. 
 Prove that | is a partial order relation on A. 
 
 
SOLUTION: 

1. “|” is reflexive. [We must show that, ∀ a ∈A, a|a] 
 Suppose a ∈A. Then a = 1⋅a and so a|a by definition of  divisibility. 

2. “|” is anti-symmetric 
 [We must show that for all a, b ∈A, if a|b and b|a then a=b] 
 Suppose a|b and b|a  
 By definition of divides there are integers k1, and k2 such that  
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   b = k1 ⋅a and a = k2 ⋅b 
 Now  b = k1 ⋅a 
     = k1⋅(k2 ⋅ b)  (by substitution) 
     = (k1 ⋅k2) ⋅b 
 Dividing both sides by b gives 
   1 = k1 ⋅k2  
 Since a, b ∈A, where A is the set of positive integers, so the  equations 
  b = k1⋅a and a = k2 ⋅b 
 implies that k1 and k2 are both positive integers. Now the  
 equation  
   k1⋅k2 =1  
 can hold only when  k1 = k2 = 1 
 Thus a = k2⋅b=1 ⋅b=b  i.e., a = b 

3. “|” is transitive 
 [We must show that ∀a,b,c∈A if a|b and b|c than a|c] 
 Suppose a|b and b|c 
 By definition of divides, there are integers k1 and k2 such that 
   b = k1 ⋅a and c = k2 ⋅b 
 Now c = k2 ⋅b 
     = k2 ⋅(k1 ⋅a) (by substitution) 
     = (k2 ⋅k1) ⋅a  (by associative law under 
       multiplication) 
     = k3 ⋅a  where k3= k2⋅k1 is an integer 

⇒ a|c   by definition of divides 
 Thus “|” is a partial order relation on A.   
 
EXERCISE: 
 Let “R” be the relation defined on the set of integers Z as  follows: 
   for all a, b ∈Z, aRb iff b=a

r
 for some positive integer r. 

 Show that R is a partial order on Z. 
 
SOLUTION: 
            1.  R is Reflexive 
      Let a ∈ Z, then  a = ar for r = 1, so aRa. 
                 So R is reflexive. 
            2.  R is ant-symmetric. 
            Let a, b ∈Z and suppose aRb and bRa. Then there are positive integers r and s     
            such that 
  b = a

r
 and a = b

s   

 Now, a = b
s 

        = (a
r
)

 s
  by substitution 

         = a
rs 

                         ⇒     rs  =1 
  Since r and s are positive integers, so this equation can hold if, and only if,  r =1  
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            and s = 1 and then a = bs = b
1
 = b   i.e., a = b 

 Thus R is anti-symmetric. 
 
 3. R is transitive. 
            Let a, b, c ∈Z and suppose aRb and bRc.  
 Then there are positive integers r and s such that  
   b = a

r
 and c = b

s 

 Now c = b
r 

   = (a
r
)

 s
  (by substitution) 

    = a
rs
 = a

t
 (where t = rs is also a positive integer) 

 Hence by definition of R, aRc. Therefore, R is transitive. 
 Accordingly, R is a partial order relation on Z. 
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Lecture No.14   Inverse of Relations 

 
 
INVERSE OF A RELATION:  
 Let R be a relation from A to B. The inverse relation R-1 from B to A is defined 
 as: 
  R-1 = {(b,a) ∈B×A | (a,b) ∈R} 
 More simply, the inverse relation R-1 of R is obtained by interchanging the 
 elements of all the ordered pairs in R. 
 
EXAMPLE: 
  Let A = {2, 3, 4} and B = {2,6,8}and let R be the “divides” relation from  
            A to B i.e. for all (a,b) ∈ A × B, a R b ⇔ a | b     (a divides b) 
 Then R = {(2,2), (2,6), (2,8), (3,6), (4,8)}and R-1= {(2,2), (6,2), (8,2), (6,3), (8,4)} 
 In words, R-1may be defined as: 
   for all (b,a) ∈B × A, b R a ⇔ b is a multiple of a. 
 
ARROW DIAGRAM OF AN INVERSE RELATION: 
 The relation R = {(2,2), (2,6), (2,8), (3,6), (4,8)} is represented by the arrow 
 diagram.  
 

2
3
4

2
6
8

A B
 

 Then inverse of the above relation can be obtained simply changing the directions 
 of the arrows and hence the diagram is 
 

R-1

2
6
8

2
3
4A

B  
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MATRIX REPRESENTATION OF INVERSE RELATION: 
 
 The relation R = {(2, 2), (2, 6), (2, 8), (3, 6), (4, 8)}from A = {2, 3,4} to  
 B = {2, 6, 8} is defined by the matrix M below: 
 
 
 
 
 
 The matrix representation of inverse relation R-1 is obtained by simply taking its 
 transpose. (i.e., changing rows by columns and columns by rows). Hence R-1 is 
 represented by Mt as shown. 
 
EXERCISE: 
   Let R be a binary relation on a set A. Prove that: 

(i) If R is reflexive, then R-1  is reflexive. 
(ii) If R is symmetric, then R-1  is symmetric. 

(iii) If R is transitive, then R-1  is transitive. 
(iv) If R is antisymmetric, then R-1  is antisymmetric. 

 
SOLUTION (i) If R is reflexive, then R-1 is reflexive. 
 Suppose that the relation R on A is reflexive. By definition, ∀ a ∈ A, (a, a) ∈R.                              
 Since R-1 consists of exactly those ordered pairs which are obtained by 
 interchanging the first and second element of ordered pairs in R, therefore,  
 if (a, a) ∈ R then (a, a) ∈ R-1. Accordingly, ∀ a ∈ A, (a, a) ∈ R-1. 
 Hence R-1is reflexive as well. 
 
SOLUTION (ii)      Suppose that the relation R on A is symmetric. 
 Let (a, b) ∈ R-1for a,b ∈A. By definition of R-1, (b, a) ∈R. Since R is symmetric, 
 therefore (a, b) ∈R. But then by definition of R-1, (b, a) ∈R. 
 We have thus shown that  for all a, b ∈ A, if (a, b) ∈R-1 then (b, a) ∈ R-1.                       
  Accordingly R-1is symmetric. 
 
SOLUTION (iii)     Prove that if R is transitive, then R-1 is transitive. 
 Suppose that the relation R on A is transitive. Let (a, b) ∈ R-1and (b, c) ∈ R-1.                                 
 Then by definition of R-1, (b, a) ∈R and (c, b) ∈R. Now R is transitive, therefore                           
   if (c, b) ∈R and (b, a) ∈R then (c, a) ∈R. 

Again by definition of R-1, we have (a, c) ∈ R-1. We have thus shown that  for all 
 a, b, c ∈ A, if (a, b) ∈ R-1and (b, c) ∈ R-1then (a, c) ∈ R-1. 

  Accordingly R-1 is transitive. 
 
SOLUTION (iv)  Prove that if R is anti-symmetric. Then R-1 is anti-symmetric. 
 Suppose that relation R on A is anti-symmetric. Let (a,b)∈ R-1 1 and (b,a)∈ R-1 
 Then by definition of R-1(b,a) ∈R and (a,b) ∈R. Since R is antisymmetric, so 
 if (a,b)∈R and (b,a)∈R then a = b.Thus we have shown that  
 if (a,b) ∈ R-1 and (b,a) ∈ R-1 then a=b. 
    Accordingly R-1 is antisymmetric. 
EXERCISE: 
         Show that the relation R on a set A is symmetric if, and only if,  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

100
010
111

4
3
2

862              

M

             2 3 4
2 1 0 0
6 1 1 0
8 1 0 1

tM
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
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    R= R-1. 
  
SOLUTION: 
   Suppose the relation R on A is symmetric.  
 Let (a,b)∈R. Since R is symmetric, so (b,a) ∈ R. But by definition of R-1 
 if (b,a) ∈ R then (a,b) ∈ R-1. Since (a,b) is an arbitrary element of R, so  
    R ⊆ R-1 …………(1)                    
 Next, let (c,d) ∈ R-1. By definition of R-1 (d,c) ∈R. Since R is symmetric,  
 so (c,d) ∈R. Thus we have shown that if (c,d) ∈ R-1 then (c,d) ∈R.Hence  
    R-1 ⊆ R…………..(2) 
 By (1) and (2) it follows that R= R-1. 
 Conversely  
   suppose R = R-1. 
 We have to show that R is symmetric. Let (a,b)∈R. 
  Now by definition of R-1 (b,a) ∈ R-1 .Since R = R-1, so (b,a) ∈ R-1= R  
 Thus we have shown that if  (a,b)∈R then (b,a)∈R 
  Accordingly R is symmetric. 
 
COMPLEMENTRY RELATION: 

Let R be a relation from a set A to a set B. The complementry relation R of R is 
 the set of all those ordered pairs in A×B that do not belong to R. 

 Symbolically: 
   R = A×B - R = {(a,b) ∈ A×B| (a,b)∉R} 
EXAMPLE: 
  Let  A = {1,2,3} and 
  R = {(1,1), (1,3), (2,2), (2,3), (3,1)} be a relation on A 
 Then R = {(1,2), (2,1), (3,2), (3,3)}  
EXERCISE: 
   Let R be the relation R = {(a,b)| a<b} on the set of integers. Find 
  a) R b) R-1 
SOLUTION: 
   a) R = Z×Z - R  = {(a,b)| a < b} 
      = {(a,b)| a ≥ b} 
   b) R-1= {(a,b) | a > b} 
EXERCISE: 
   Let R be a relation on a set A. Prove that R is reflexive iff R is  
 irreflexive 
 
SOLUTION: 
   Suppose R is reflexive. Then by definition, for all a∈A, (a,a) ∈R 
 But then by definition of the complementry relation (a,a) ∉R, ∀ a∈A. 
 Accordingly R is irreflexive. 
 Conversely  
   if R is irreflexive, then (a,a) ∉R, ∀ a∈A. 
 Hence by definition of R, it follows that (a,a) ∈R, ∀ a∈A 
 Accordingly R is reflexive.  
EXERCISE: 
  Suppose that R is a symmetric relation on a set A. Is R also  symmetric. 
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SOLUTION: 
  Let (a,b)∈R. Then by definition of R, (a,b) ∉R. Since R is  symmetric, so  
   if (a,b) ∉R then (b,a) ∉ R.  
 {for (b,a) ∈ R and (a,b) ∉ R will contradict the symmetry property of R} 
 Now (b,a) ∉R ⇒(b,a) ∈ R.Hence if (a,b) ∈R then (b,a) ∈R 
 Thus R is also symmetric. 

 
 

COMPOSITE RELATION:  
 Let R be a relation from a set A to a set B and S a relation from B to a set C. The 
 composite of R and S denoted SoR is the relation from A to C, consisting of 
 ordered pairs (a,c) where a ∈A, c ∈C, and for which there exists an element  
 b ∈B such that (a,b) ∈R and (b,c) ∈S. 
  Symbolically: 
    SoR = {(a,c)|a ∈A, c ∈C,∃ b ∈B, (a,b) ∈R and (b,c) ∈S} 
EXAMPLE: 
   Define R = {(a,1), (a,4), (b,3),(c,1), (c,4)} as a relation from A to B 
 and S = {(1,x),(2,x), (3,y), (3,z)} be a relation from B to C. 
 Hence 
  SoR = {(a,x), (b,y), (b,z), (c,x)} 
COMPOSITE RELATION FROM  ARROW DIAGRAM: 
 
 Let A = {a,b,c},B = {1,2,3,4} and C = {x,y,z}. Define relation R from A to B and 
 S from B to C by the following arrow diagram. 
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MATRIX REPRESENTATION OF COMPOSITE RELATION: 
 The matrix representation of the composite relation can be found using the 
 Boolean product of the matrices for the relations. Thus if MR and MS are the 
 matrices for relations R (from A to B) and S (from B to C), then 
    MSoR = MR OMS 
 is the matrix for the composite relation SoR from A to C. 
  BOOLEAN     BOOLEAN      
  ADDITION    MULTIPLICATION 
 a. 1 + 1 = 1    a. 1 . 1 = 1 
 b. 1 + 0 = 1    b. 1 . 0 = 0 
 c. 0 + 0 = 0    c. 0 . 0 = 0 
 
EXERCISE: 
   Find the matrix representing the relations SoR and RoS where the 
 matrices representing R and S are 
 
 
 
 
SOLUTION: 
  The matrix representation for SoR is 
 
 
 
 
 
 
 
 
 
 
 
 The matrix representation for RoS is 
 
 
 
 
 
 
 
 
EXERCISE: 
 Let R and S be reflexive relations on a set A. Prove SoR is  reflexive. 
 
SOLUTION: 
  Since R and S are reflexive relations on A, so  
             ∀ a ∈A, (a, a) ∈R and (a, a) ∈S 
   and by definition of the composite relation SoR, it is clear that   
                       (a, a) ∈SoR ∀ a ∈A. 
   Accordingly SoR is also reflexive. 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000
011
101

RM
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=
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010

SM

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

101
100
010

   
000
011
101

SRSOR OMMM

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=
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110
111

⎥
⎥
⎥

⎦

⎤

⎢
⎢
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⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
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⎥
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⎦
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⎢
⎢
⎢
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Lecture No.15   Functions 

 
 
RELATIONS AND FUNCTIONS:  
A function F from a set X to a set Y is a relation from X to Y that satisfies the following 
two properties 
       1.  For every element x in X, there is an element y in Y such that (x,y) ∈F.  
            In other words every element of X is the first element of some ordered pair of F. 
       2.  For all elements x in X and y and z in Y, if (x,y) ∈F and (x,z) ∈F, then  y = z   
            In other words no two distinct ordered pairs in F have the same first element.   
 
EXERCISE: 
Which of the relations define functions from X = {2,4,5} to Y={1,2,4,6}. 
a. R1 = {(2,4), (4,1)} 
b. R2 = {(2,4), (4,1), (4,2), (5,6)} 
c. R3 = {(2,4), (4,1), (5,6)} 
 
SOLUTION : 
a. R1 is not a function, because 5 ∈X does not appear as the first element in any ordered           
pair in R1. 
b. R2 is not a function, because the ordered pairs (4,1) and (4,2) have the same first 
element but different second elements. 
c. R3 defines a function because it satisfy both the conditions of the function that is every 
element of X is the first element of some order pair and there is no pair which has the 
same first order pair but different second order pair. 
 
EXERCISE: 
Let A = {4,5,6} and B = {5,6} and define binary relations R and S from A to B as 
follows: 
 for all (x,y) ∈A × B, (x,y) ∈ R ⇔ x≥y 
 for all (x,y) ∈A × B, xSy          ⇔ 2|(x-y) 

a. Represent R and S as a set of ordered pairs. 
b. Indicate whether R or S is a function 

 
SOLUTION: 
a. Since we are given the relation R contains those order pairs of A × B which has their 
first element greater or equal to the second Hence R contains the order pairs. 
R = {(5,5), (6,5), (6,6)}   
Similarly S is such a relation which consists of those order pairs for which the difference 
of first and second  elements  difference divisible by 2. 
 Hence S = {(4,6), (5,5), (6,6)} 
 
b. R is not a function because 4 ∈A is not related to any element of B. 
   S clearly defines a function since each element of A is related to a unique element of B. 
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FUNCTION: 
                      A function f from a set X to a set Y is a relationship between elements of X 
and elements of Y such that each element of X is related to a unique element of Y, and is 
denoted  f : X →Y. The set X is called the domain of f and Y is called the co-domain of f. 
 
NOTE: The unique element y of Y that is related to x by f is denoted f(x) and is called                              
 f of x, or the value of f at x, or the image of x under f 
 
ARROW DIAGRAM OF A FUNCTION: 
The definition of a function implies that the arrow diagram for a function f has the 
following two properties: 
1.  Every element of X has an arrow coming out of it        
2.  No two elements of X has two arrows coming out of it that point to two different 
elements of Y. 
 
EXAMPLE:                                                                                      
Let X = {a, b, c} and Y={1,2,3,4}. 
Define a function f from X to Y by the arrow diagram.  

f

a .
b .
c .

. 1

. 2

. 3

. 4

X Y
 

You can easily note that the above diagram satisfy the two conditions of a function hence 
a graph of the function. 
Note that  f(a) = 2, f(b) = 4,and f(c) = 2 
 
FUNCTIONS AND NONFUNCTIONS: 
Which of the arrow diagrams define functions from X = {2,4,5}to Y = {1,2,4,6}. 
 

a.

2 .
4 .
5 .

. 1

. 2

. 4

. 6

X Y

2 .
4 .
5 .

. 1

. 2

. 4

. 6

X Y

b.

 
The relation given in the diagram (a) is Not a function because there is no arrow coming 
out of 5∈X to any element of Y. 
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The relation in the diagram (b) is Not a function, because there are two arrows coming 
out of 4∈X. i.e.,4∈X is not related to a unique element of Y. 
 
RANGE OF A FUNCTION: 
             Let f: X→Y. The range of f consists of those elements of Y that are image of 
elements of X. 
                  Symbolically, Range of f = {y ∈Y| y = f(x), for some x ∈X} 
 
NOTE: 
1. The range of a function f is always a subset of the co-domain of f. 
2. The range of f: X →Y is also called the image of X under f. 
3. When y = f(x), then x is called the pre-image of y. 
4. The set of all elements of X, that are related to some y ∈Y   is called the inverse     
 image of y. 
 
EXERCISE: 
Determine the range of the functions f, g, h from X = {2,4,5} to Y = {1,2,4,6} defined as: 
 

f

1.

2 .
4 .
5 .

. 1

. 2

. 4

. 6

X Y

 
  
 
2. g = {(2,6), (4,2), (5,1)} 
3. h(2) = 4, h (4) = 4, h(5) = 1 
 
SOLUTION: 
1.   Range of f = {1, 6}  
2.   Range of g = {1, 2, 6} 
3.   Range of h = {1, 4} 
 
GRAPH OF A FUNCTION: 
Let f be a real-valued function of a real variable. i.e. f:R →R. The graph of f is the set of 
all points (x,y) in the Cartesian coordinate plane with the property that x is in the domain 
of f and y = f(x). 
 
EXAMPLE: 
We have to draw the graph of the function f given by the relation y=x2 in order to draw 
the graph of the  function we will first take some elements from the domain will see the 
image of them and then plot then on the graph as follows 
Graph of y = x2       
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(-3,9)

(-2,4)

(-1,1)

(3,9)

(2,4)

(1,1)

O (o,o)

y

x

9+3

4+2

1+1

00

1-1

4-2

9-3

y=f(x)x

9+3

4+2

1+1

00

1-1

4-2

9-3

y=f(x)x

y = x2

(x , f(x))

 
 
VERTICAL LINE TEST FOR THE GRAPH OF A FUNCTION: 
For a graph to be the graph of a function, any given vertical line in its domain intersects 
the graph in at most one point. 
 
EXAMPLE: 
The graph of the relation y = x2 on R defines a function by vertical line test. 
 
 

y=x2

y

O x
 

 
 
 
 
EXERCISE: 
Define a binary relation P from R to R as follows:  
for all real numbers x and y (x, y) ∈ P ⇔ x = y2                                          
Is P a function? Explain. 
 
SOLUTION: 
The graph of the relation x = y2 is shown below. Since a vertical line intersects the graph 
at two points; the graph does not define a function. 
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4

3

2

1
0 -1

-2

-3

-4

(4,2)

(4,-2)

x12 3 4 5 6 7 8 9 10

39

24

11

00

-11

-24

-39

Yx

39

24

11

00

-11

-24

-39

Yx

 
 
EXERCISE: 
Find all functions from X = {a,b} to Y = {u,v} 
 
SOLUTION: 
 

a

b

u

v
X

Y

1. a

b

u

v

2.

 
 

a

b

u

v

3.

X Y

4.
a

b

u

v

X Y  
 
EXERCISE: 
Find four binary relations from X = {a,b}to Y = {u,v}that are not functions. 
 
SOLUTION:  
The four relations are 
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a.

b.

.u

.v

X Y

1. 2.

a.

b.

.u

.v

X Y

a.

b.

u.

v.

X Y3.

a.

b.

u.

v.

X Y
4.

 
 
 
EXERCISE: 
How many functions are there from a set with three elements to a set with four elements. 
 
SOLUTION: 
Let X = {x1, x2, x3} and Y= {y1, y2, y3,y4} 
Then x1 may be related to any of the four elements y1, y2, y3, y4 of Y. Hence there are 4 
ways to relate x1 in Y. Similarly x2 may also be related to any one of the 4 elements in Y. 
Thus the total number of different ways to relate x1 and x2 to elements of Y are 4 × 4 = 
16. Finally x3 must also has its image in Y and again any one of the 4 elements y1, or y2 
or y3 or y4 could be its image.  
Therefore the total number of functions from X to Y are 
   4 × 4 × 4 = 43 = 64. 
EXERCISE: 
Suppose A is a set with m elements and B is a set with n elements. 
          1.   How many binary relations are there from A to B? 
          2.   How many functions are there from A to B? 
          3.   What fraction of the binary relations from A to B are functions? 
 
SOLUTION: 
 
1.   Number of elements in A × B = m.n 
      Therefore,  number of binary relations from A to B =                 
         Number of all subsets of A × B = 2mn 

2.   Number of functions from A to B = n.n.n. … .n       (m times) 

    = n m 
3.   Fraction of binary relations that are functions =  n m  / 2mn  
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FUNCTIONS NOT WELL DEFINED: 
Determine whether f is a function from Z to R if 
 

2

2

1. ( ) . ( )
4

. ( ) . ( ) 1

a f n n b f n
n

c f n n d f n n

= ± =
−

= = +

 

 
SOLUTION: 
a. f is not well defined since each integer n has two images +n and -n 
b. f is not well defined since f(2) and f(-2) are not defined. 
c. f is not defined for n < 0 since f then results in imaginary values (not real) 
d. f is well defined because each integer has unique (one and only one) image in R   
 under f. 
 
EXERCISE: 
Student C tries to define a function h : Q → Q by the rule. 
for all integers m and n with n ≠ 0 
Students D claims that h is not well defined. Justify students D’s claim. 
 
SOLUTION: 
The function h is well defined if each rational number has a unique (one and only one) 
image. 
 
 
 
     
 
 
 
 
 
Hence an element of Q has more than one images under h. Accordingly h is not well 
defined. 
 
REMARK: 
A function f: X → Y is well defined iff  ∀ x1, x2 ∈X, if x1 = x2 then f(x1) = f(x2) 
 
EXERCISE: 
Let g: R→R+ be defined by g(x) = x2 +1 
1. Show that g is well defined. 
2. Determine the domain, co-domain and range of g. 
 
 
SOLUTION: 
1. g is well defined: 
 Let x1, x2 ∈R and suppose x1 = x2 

1Consider   
2

Q∈

2m mh
n n

⎛ ⎞ =⎜ ⎟
⎝ ⎠

2

2

1 1 1
2 2 2

1 2Now and
2 4

2 2 4 1
4 4 4

h

h

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

=

⎛ ⎞ = = =⎜ ⎟
⎝ ⎠
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⇒ x1
2 = x2

2  (squaring both sides) 
⇒ x1

2 + 1 = x2
2 + 1 (adding 1 on both sides) 

⇒ g (x1) = g(x2) (by definition of g) 
Thus if x1 = x2 then g (x1) = g(x2). According g:R → R+ is well defined. 
2.  g:R →R+ defined by g(x) = x2 + 1.  
Domain of g = R (set of real numbers) 
Co-domain of g = R+ (set of positive real numbers) 
The range of g consists of those elements of R+ that appear as image points. 
Since x2 ≥0  ∀ x ∈R 
 x2 + 1≥ 1 ∀ x ∈R 
i.e. g(x) = x2 + 1≥ 1 ∀ x ∈R 
Hence the range of g is all real number greater than or equal to 1, i.e., the internal [1,∝) 
 
IMAGE OF A SET: 
Let f : X →Y is function and A ⊆ X. 
The image of A under f is denoted and defined as: 
 f(A) = {y∈Y | y=f(x), for some x in A} 
 
EXAMPLE: 
 Let f: X →Y be defined by the arrow diagram 
Let A = {1,2}and B = {2,3} then 
f(A)={b} and f(B) = {b,c} under the function defined in the Diagram then we say that 
image set of A is {b} and I mage set of B is {b,c}. 
 

1

2

3
4

.a

b

c

f

X Y  
 
 
 
INVERSE IMAGE OF A SET: 
Let f: X →Y is a function and C ⊆ Y. The inverse image of C under f is denoted and 
defined as: 
  f-1(C)={x ∈X | f(x) ∈C} 
 
EXAMPLE: 
Let f: X →Y be defined by the arrow diagram. 
Let C = {a},D = {b,c},E = {d} then 
f-1(C)={1,2}, 
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f-1(D) = {3,4}, and        
f-1(E) =∅ 

1

2

3

4

a

b

c

d

X Yf

 
 
SOME RESULTS: 
Let f: X →Y is a function. Let A and B be subsets of X and C and D be subsets of Y. 
1. if A⊆ B then f(A) ⊆ f(B) 
2. f(A∪B) = f(A) ∪f(B) 
3. f(A∩B) ⊆ f(A) ∩ f(B) 
4. f(A-B) ⊃ f(A) - f(B) 
5. if C ⊆ D, then f-1(C) ⊆ f-1(D) 
6. f-1(C∪D) = f-1(C) ∪ f-1((D) 
7. f-1(C∩D) = f-1(C) ∩f-1(D) 
8. f-1(C-D) = f-1 (C) - f-1 (D) 
 
BINARY OPERATIONS: 
A binary operation “*” defined on a set A assigns to each ordered pair (a, b) of elements 
of A, a uniquely determined element a*b of A. 
         That is, a binary operation takes two elements of A and maps them to a third 
element of A. 
 
EXAMPLE: 
1. “+” and “.” are binary operations on the set of natural numbers N. 
2. “-” is not a binary operation on N. 
3. “-” is a binary operation on Z, the set of integers. 
4.         “÷” is a binary operation on the set of non-zero rational numbers  
 Q-{0}, but not a binary operation on Z. 
 
BINARY OPERATION AS FUNCTION: 
A binary operation “*” on a set A is a function from A * A to A.       
   i.e. *: A ×A →A. 
Hence *(a,b) = c, where a, b, c ∈A. 
 
NOTE:  *(a,b) is more commonly written as a*b. 
 
 
EXAMPLES: 
      1.    The set operations union ∪, intersection ∩ and set difference -, are binary     
             operators on the power set P(A) of any set A. 
      2.    The logical connectives ∨, ∧, →, ↔ are binary operations on the set {T, F} 
      3.    The logic gates OR and AND are binary operations on {0,1} 
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AND

A

B

A⋅BA

B

A+B

OR

 
 
 

000

110

101

111

A+BBA

000

110

101

111

A+BBA

000

010

001

111
A⋅BBA

000

010

001

111
A⋅BBA

  
 
 

4. The logic gate NOT is a uniary operation on {0,1} 
 

 

A
NOT

AA
NOT

A

 
 
 

10

01

AA

10

01

AA
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Lecture No.16   Types of functions 

   
 
INJECTIVE or ONE-TO-ONE FUNCTION  
 
Let f: X →Y be a function. f is injective or one-to-one if, and only if, ∀ x1, x2 ∈X,  
         if x1 ≠ x2  then f(x1) ≠ f(x2)That is, f is one-to-one if it maps distinct         
 points of the domain into the distinct points of the co-domain.                                                   
                                                                

f

x1

x2

f(x1)

f(x2)
 

 
 
A one-to-one function separates points. 
 
FUNCTION NOT ONE-TO-ONE: 
A function f: X →Y is not one-to-one iff there exist elements x1 and x2 in such  
that x1 ≠ x2 but  f(x1) = f(x2).That is, if distinct elements  x1 and  x2  can found in   
domain of f that have the same function value. 

f

X=domain of f Y=co-domain of f

x1

x2

f(x1)=f(x2)

 
 A function that is not one-to-one collapses points together. 
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EXAMPLE: 
                Which of the arrow diagrams define one-to-one functions? 
 
 

a

b

c

1

2
3

4

X Y

f

a

b

c

1

2
3

4

X Y

g

 
SOLUTION:  
           f is  clearly one-to-one function, because no two different elements of Xare 
                  mapped onto the same element of Y.  
           g is not one-to-one because the elements a and c are mapped onto the same 
                 element 2 of Y. 
 
ALTERNATIVE DEFINITION FOR ONE-TO-ONE  FUNCTION: 

A function f: X →Y is one-to-one (1-1) iff  ∀ x 1, x2 ∈X, if x1 ≠ x2   then f(x1)    
≠ f(x2 )   (i.e distinct elements of 1st set have their distinct images in 2nd set) 

                The equivalent contra-positive statement for this implication is∀ x1, x2 ∈X,  
                 if f(x1 ) = f(x2), then x1 = x2 
REMARK: 
                  f: X →Y is not one-to-one iff  ∃  x1, x2  ∈X with f(x1) = f(x2) but x1 ≠ x2 
 
EXAMPLE: 
                Define f: R →R by the rule f(x) = 4x - 1 for all x ∈R 
                 Is f one-to-one? Prove or give a counter example. 
 
SOLUTION: 
                 Let x1, x2 ∈R such that f(x1) = f(x2)  
                     ⇒         4x1 - 1 = 4 x2 – 1 (by definition of f) 
                     ⇒         4 x1 = 4 x2             (adding 1 to both sides) 
                     ⇒            x1 = x2                        (dividing both sides by 4) 
 
              Thus we have shown that if f(x1) = f(x2) then x1=x2   
              Therefore, f is one-to-one 
 
EXAMPLE: 
              Define g : Z → Z by the rule  g(n)=n2 for all n ∈Z                          
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               Is g one-to-one? Prove or give a counter example. 
 
SOLUTION: 
              Let n1, n2 ∈Z and suppose  g(n1) = g(n2) 
       ⇒                n1

2 = n2
2  (by definition of g) 

    ⇒ either n1 = + n2    or   n1 = - n2    
              Thus g(n1) = g(n2) does not imply n1 = n2 always. 
              As a counter example, let n1 = 2 and n2 = -2.  
              Then  
                      g(n1) = g(2) = 22 = 4    and also     g(n2) = g(-2) = (-2) 2 = 4 
Hence g(2) = g(-2) where as 2 ≠-2 and so g is not one-to-one. 
 
EXERCISE: 

   Find all one-to-one functions from X = {a, b} to Y = {u, v} 
 
SOLUTION: 
             There are two one-to-one functions from X to Y defined by the arrow diagrams. 
 
 
 
 
  
 
 
 
 
 
 
 
 
  
EXERCISE: 

How many one-to-one functions are there from a set with three elements to       
a set with four elements. 

 
SOLUTION:                 
                Let X = { x 1,x 2, x 3} and Y = {y 1,y 2,y 3,y 4} 
 

x 1 .
x 2 .

x 3 .

. y 1

. y 2

. y 3

. y 4

X Y  
 



16- Types of functions    VU                       
 
 

 
© Copyright Virtual University of Pakistan 

115

x1 may be mapped to any of the 4 elements of Y. Then x2 may be mapped to any of the 
remaining 3 elements of Y & finally x3  may be mapped to any of the remaining 2  
elements of Y. 
                   Hence, total no. of one-to-one functions from X to Y are 
    4 × 3 × 2 = 24 
EXERCISE: 
How many one-to-one functions are there from a set with three elements to a set with two 
elements. 
 
SOLUTION: 
 Let X = {x 1, x 2, x 3} and Y = {y 1, y 2} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Two elements in X could be mapped to the two elements in Y separately. But there is no 
new element in Y to which the third element in X could be mapped. Accordingly there is 
no one-to-one function from a set with three elements to a set with two elements. 
GRAPH OF ONE-TO-ONE FUNCTION: 
A graph of a function f is one-to-one iff every horizontal line intersects the graph in at 
most one point. 
EXAMPLE: 

( -2 ,4 )

y y = x 2

-2 0 + 2 x

N O T  O N E -T O -O N E  F U N C T IO N
F ro m  R  to  R +

y

0

xy =

x

O N E -T O -O N E  F U N C T IO N
fro m  R + to  R

(2 ,4 )
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SURJECTIVE FUNCTION or ONTO FUNCTION: 

 
Let f: X→Y be a function. f is surjective or onto if, and only if, "∀ y∈Y, ∃ x∈X such that   
                                                        f(x) = y. 
That is, f is onto if every element of its co-domain is the image of some element(s) of its 
domain i.e.,  co-domain of f = range of f 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each element y in Y equals f(x) for at least one x in X 
 
FUNCTION NOT ONTO: 
A function f:X→Y is not onto iff there exists yε Y such that ∀x εX, f(x) ≠y.  
That is, there is some element in Y that is not the image of any element in X. 

 . 

f
.

.

.

.

.
.

.

X=domain of f Y=co-domain of f
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EXAMPLE: 
 Which of the arrow diagrams define onto functions? 
 

a

b

c

1

2

.3

a

b
c

1

2

3

X Y X Y

g

d

f

 
 
SOLUTION: 
 f is not onto because 3 ≠ f(x) for any x in X.  g is clearly onto because each 
element of Y equals g(x) for some x in X.  
as 1 = g(c);,2 = g(d);3 = g(a) = g(b) 
 
EXAMPLE: 
Define f: R →R by the rule 
  f(x) = 4x-1 for all x ∈R 
Is f onto? Prove or give a counter example. 
 
SOLUTION: 
  Let y ∈R.  
                 We search for an x ∈ R such that  
                           f(x) = y 
                             or  4x-1 = y  (by definition of f) 
 
Solving it for x, we find  x=y+1                           .  
 
Hence for every  y ∈R, there exists                          such that  
 
 
 
  
 
 
 
Hence f is onto. 
 
 
 

1( )
4

yf x f +⎛ ⎞= ⎜ ⎟
⎝ ⎠

14. 1 ( 1) 1
4

y y y+⎛ ⎞= − = + − =⎜ ⎟
⎝ ⎠

1
4

yx R+
= ∈

1
4

yx R+
= ∈
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EXAMPLE: 
Define h: Z →Z by the rule 
  h(n) = 4n - 1 for all n ∈ Z 
Is h onto? Prove or give a counter example. 
 
SOLUTION: 
Let m ∈Z. We search for an n ∈Z such that  h(n) = m. 
 or      4n - 1 = m  (by definition of h) 

Solving it for n, we find 1
4

mn +
=  

But  1
4

mn +
=  is not always an integer for all m ∈Z. 

As a counter example, let m = 0∈ Z, then 
 h(n) = 0  
⇒ 4n-1 = 0 
⇒ 4n = 1 
 

⇒        1
4

n = ∉ Ζ  

Hence there is no integer n for which h(n) = 0. 
Accordingly, h is not onto. 
 
GRAPH OF ONTO FUNCTION: 
A graph of a function f is onto iff every horizontal line intersects the graph in at least one 
point. 
 
EXAMPLE: 
 
 

O

y y=ex

x

ONTO FUNCTION 
from  R to R+

NOT ONTO FUNCTION FROM 
R to R

x

y
y = |x|

O
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EXERCISE: 
Let X = {1,5,9} and Y = {3,4,7}.Define g: X →Y by specifying that 
g(1) = 7, g(5) = 3, g(9) = 4 
Is g one-to-one? Is g onto? 
 
SOLUTION: 
g is one-to-one because each of the three elements of X are mapped to a different 
elements of Y by g. 
 g(1) ≠ g(5), g(1) ≠ g(a), g(5) ≠ g(a) 
g is onto as well, because each of the three elements of co-domain Y of g is the image of 
some element of the domain of g. 
 3 = g(5), 4 = g(9), 7 = g(1)  
 
EXERCISE: 
Define f: P({a,b,c})→Z as follows: 
 for all A∈P ({a,b,c}), f(A)= the number of elements in A. 
 a. Is f one-to-one? Justify. 
 b. Is f onto? Justify. 
 
SOLUTION: 
a. f is not one-to-one because f({a}) = 1 and f({b}) = 1 but {a}≠ {b}      
b.         f is not onto because, there is no element of P({a,b,c}) that is mapped 

      to 4 ∈Z. 
 
EXERCISE: 
Determine if each of the functions is injective or surjective. 
a. f: Z →Z+ define as f(x) = |x| 
b. g: Z+ → Z+ × Z+ defined as g(x) = (x,x+1) 
 
SOLUTION: 
a. f is not injective, because 
 f(1) = |1| = 1  and f(-1) = |-1| = 1 
i.e.,      f(1) = f(-1)  but 1 ≠ -1 
            f is onto, because for every a∈Z+, there exist –a and +a in Z such that 
 f(-a) = |-a| = a    and   f(a) = |a| = a 
b. g: Z+ → Z+ × Z+ defined as g(x) = (x,x+1) 
 Let         g(x1) = g(x2)  for x1, x2 ∈Z+ 

 ⇒ (x1, x1 +1) = (x2, x2+1) (by definition of g) 
  ⇒ x1 = x2  and x1 + 1 = x2 + 1  
   (by equality of ordered pairs) 
  ⇒ x1 = x2 
            Thus if g(x1) = g(x2) then x1 = x2 
             Hence g is one-to-one. 
             g is not onto because (1,1) ∈Z+×Z+ is not the image of any element of Z+. 
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BIJECTIVE FUNCTION  
or 
 ONE-TO-ONE CORRESPONDENCE 
A function f: X→Y that is both one-to-one (injective) and onto (surjective) is called a 
bijective function or a one-to-one correspondence. 
 
 
 
 
 
 
 
 
 
 
 
EXAMPLE: 
 The function f: X→Y defined by the arrow diagram is both one-to-one and onto; hence a 
bijective function. 
 

a

b

c

1

2

.3

X Y

f

 
 
EXERCISE: 
Let f: R →R be defined by the rule f(x) = x3.Show that f is a bijective. 
SOLUTION: 
f is one-to-one 
Let f(x1) = f(x2)  for x1, x2∈R 
⇒ x13 = x23 

⇒  x13 - x23 = 0 
⇒ (x1 -x2) (x12 + x1x2 + x22) = 0 
⇒ x1 - x2 = 0 or  x12 + x1x2 + x22=0 
⇒ x1 = x2  (the second equation gives no real solution) 
Accordingly f is one-to-one. 
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f is onto 
Let y ∈R. We search for a x ∈R such that  
 f(x)=y 
⇒ x3 = y  (by definition of f) 
or x = (y)1/3  

Hence for y ∈R, there exists x = (y)1/3 ∈ R such that  
 f(x) = f((y)1/3) 
        = ((y)1/3)3 = y 
Accordingly f is onto. 
Thus, f is a bijective. 

GRAPH OF BIJECTIVE FUNCTION: 
A graph of a function f is bijective iff every horizontal line intersects the graph at exactly 
one point. 
 

0 x

y y=x3

BIJECTIVE FUNCTION 
from R to R

(0,5)

(5,0) O(0,0)

BIJECTIVE FUNCTION 
from R to R

 

 

IDENTITY FUNCTION ON A SET: 
Given a set X, define a function ix from X to X  by  ix(x) = x  from all x ∈X. 
The function ix is called the identity function on X because it sends each element of X to 
itself. 
 
 
EXAMPLE: 
Let X = {1,2,3,4}. The identity function ix on X is represented by the arrow diagram 
 
 



16- Types of functions    VU                       
 
 

 
© Copyright Virtual University of Pakistan 

122

 
 
 
 
 
 
 
 
 
 
 
 
EXERCISE: 
Let X be a non-empty set. Prove that the identity function on X is bijective. 
 
SOLUTION: 
Let ix: X →X be the identity function defined as ix(x) = x ∀∈X 
1. ix is injective (one-to-one) 
  Let ix(x1) = ix(x2) for x1, x2 ∈X     
    ⇒   x1 = x2  (by definition of ix)             
            Hence ix is one-to-one. 
 
2. ix is surjective (onto) 
 Let y ∈X (co-domain of ix) Then there exists y ∈X (domain of ix) such that ix (y) 
= y  Hence ix is onto. Thus, ix being injective and surjective is bijective. 
 
CONSTANT FUNCTION: 
A function f:X→Y is a constant function if it maps (sends) all elements of X to one 
element of Y i.e. ∀ x ∈X, f(x) = c, for some c ∈ Y          
 
EXAMPLE: 
 The function f defined by the arrow diagram is constant. 

1

2

3

.7

.8

.9

X Y
f

4
 

 
 
REMARK: 
1.  A constant function is one-to-one iff its domain is a singleton. 
2.  A constant function is onto iff its co-domain is a singleton. 
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Lecture No.17   Inverse Function 
 
 
EQUALITY OF FUNCTIONS: 
Suppose f and g are functions from X to Y. Then f equals g, written  f = g, if, and only if,  
f(x)=g(x) for all x∈X 
 
EXAMPLE:  
Define f: R →R and g: R→R by formulas: 
  f(x) = |x|  for all x∈R 
   
                       g(x)=        for all x∈R 
 
Since the absolute value of a real number equals to square root of its square  
 
i.e.,   |x| =         for all x ∈R 
 
Therefore  f(x) = g(x) for all x∈R 
Hence f = g 
 
EXERCISE: 
Define functions f and g from R to R by formulas:  
 
                                      f(x) = 2x and                                 for all x∈R.  
Show that f = g 
 
SOLUTION: 

 
INVERSE OF A FUNCTION 

1.

2.

3.

.a

.b

.c

FUNCTION INVERSE

X Y

g

1.

2.

3.

.a

.b

.c

XY

g-1

 

Rxxf
xx

x
xx

x
xxxg

∈=
≠+=

+
+

=

+
+

=

 allfor )(
]01[2

)1(
)1(2

1
22)(

2

2

2

2

3

∵

2x

2x

1
22)( 2

3

+
+

=
x

xxxg
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Remark: Inverse of a function may not be a function. 

1.

2.

3.

.a

.b

.c

d

INJECTIVE FUNCTION INVERSE

X Z

f

1.

2.

3.

.a

.b

.c

d

XZ

f-1

 
 
 
Note: Inverse of an injective function may not be a function. 
 
 
 

1.

2.

3.

.a

.b

SURJECTIVE FUNCTION INVERSE

X Y

h

1.

2.

3.

.a

.b

XY

h-1

 
 
Note: Inverse of a surjective function may not be a function. 



17- Inverse function  VU                       
 
 

 
© Copyright Virtual University of Pakistan 

125

1.

2.

3.

.a

.b

c

BIJECTIVE FUNCTION INVERSE

X Y

p

1.

2.

3.

.a

.b

c

XY

P-1

  
 
Note: Inverse of a surjective function may not be a function. 
 
 
INVERSE FUNCTION: 
Suppose f: X→Y is a bijective function. Then the inverse function f-1: Y→X is defined 
as: 
                               ∀ y∈Y,f-1(y) = x  ⇔ y = f(x) 
That is, f-1 sends each element of Y back to the element of X that it came from under f. 
 
 

x=f-1(y) f(x)=y

f

f-1

X=domain of f Y=co-domain of f  
 
 
REMARK:  
A function whose inverse function exists is called an invertible function. 
 
 
INVERSE FUNCTION FROM AN ARROW DIAGRAM:  
Let the bijection f: X→Y be defined by the arrow diagram. 
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1.

2.

3

4.

.6

7

8

9

X Y

f

 
 
The inverse function f-1:Y→X is represented below by the arrow diagram. 
 

1.

2.

3

4.

.6

7

8

9

f-1

 
 
INVERSE FUNCTION FROM A FORMULA: 
Let f:R→R be defined by the formula f(x) = 4x-1  ∀x∈R 
Then f is bijective, therefore f-1 exists. By definition of f-1, 
              f-1 (y) = x ⇔ f(x)=y 
Now solving    f(x) = y    for x 
     ⇔ 4x-1 = y (by definition of f) 
     ⇔ 4x = y + 1 
     ⇔ 
 
 
Hence, f-1 (y) =            is the inverse of f(x)=4x-1 which defines f-1: R→R. 
 
WORKING RULE TO FIND INVERSE FUNCTION: 
Let f: X →Y be a one-to-one correspondence defined by the formula f(x)=y. 
1. Solve the equation f(x) = y for x in terms of y. 
2. f-1 (y) equals the right hand side of the equation found in step 1. 
 
 

4
1+y

4
1+

=
yx
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EXAMPLE: 
Let a function f be defined on a set of real numbers as  
                                    for all real numbers x ≠1. 
 
    1. Show that f is a bijective function on R-{1}. 
    2. Find the inverse function f-1 
 
SOLUTION: 
1.  To show f is injective 
             Let x1, x2 ∈R-{1} and suppose 
  f(x1) = f(x2) we have to show that x1 = x2 
 
   (by definition of f) 
 
⇒ (x1 + 1) (x2 - 1) = (x2 + 1) (x1 - 1)  
⇒ x1x2 - x1 + x2 - 1 = x1x2 - x2 + x1 - 1 
⇒ - x1 + x2 = - x2 + x1 
⇒ x2 + x2 = x1 + x1 
⇒ 2 x2 = 2 x1 
⇒ x2 = x1 
Hence f is injective. 
 
b. Next to show that f is surjective 
 Let y ∈ R - {1}. We look for an x ∈R - {1}such that f(x) = y 
⇒ x + 1= y(x-1) 
⇒ 1+ y = xy - x 
⇒ 1 + y = x(y-1) 
 
⇒   
 
 
             Thus for each y ∈ R - {1}, there exists                   ∈ R - {1} 
 
             such that    
 
 
            Accordingly f is surjective 
2. inverse function of f 
 The given function f is defined by the rule 
 
      
 
⇒ x + 1 = y (x-1) 
⇒ x + 1 = yx-y 
⇒ y + 1 = yx-x 
⇒ y + 1 = x(y-1) 
 
⇒  
 

1( )
1

xf x
x

+
=

−

1 2

1 2

1 1
1 1

x x
x x

+ +
⇒ =

− −

1( )         (say)
1

xf x y
x

+
= =

−

1
1

yx
y

+
=

−

1
1

−
+

=
y
yx

1
1

−
+

=
y
yx

y
y
yfxf =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−
+

=
1
1)(
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            Hence f-1(y) =  
 
EXERCISE: 
Let f: R→R be defined by 
   f(x) = x3 + 5 
Show that f is one-to-one and onto. Find a formula that defines the inverse function f-1. 
 
SOLUTION: 
1. f is one-to-one 
 Let f(x1) = f(x2) for x1, x2 ∈R 
⇒ x1

3 + 5 = x2
3 + 5 (by definition of f) 

⇒  x1
3 = x2

3  (subtracting 5 on both sides) 
⇒ x1 = x2  .Hence f is one-to-one. 
 
2. f is onto 
 Let y ∈R. We search for an x ∈R such that f(x) = y. 
⇒ x3 + 5 = y (by definition of f) 
⇒ x3 = y - 5 
⇒ x =  
Thus for each y ∈R, there exists x =               ∈R  
such that 
 
 
 
 
 
Hence f is onto. 
 
3. formula for f-1 
 f is defined by y = f(x) = x3 + 5 
               ⇒ y-5 = x3 
 
      or    x   =  
 
Hence f-1 (y) =  
which defines the inverse function. 
 
 
COMPOSITION OF FUNCTIONS: 
 
Let f: X →Y′ and g: Y →Z be functions with the property that the range of f is a subset of 
the domain of g i.e. f(X)⊆Y. 
Define a new function gof:X →Z as follows: 
    (gof)(x) = g(f(x)) for all x∈X 
The function gof is called the composition of f and g. 

1; 1
1

y y
y

+
≠

−

( )
( )

3

3
3

( ) 5

5 5 (by definition of f)

( 5) 5

f x f y

y

y y

= −

= − +

= − + =

3 5y −
3 5y −

3 5−y

3 5−y
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X Y Z

x

gof

Y′

g

f(x)

f

g(f(x)) =(gof)(x)

 
 
COMPOSITION OF FUNCTIONS DEFINED BY ARROW DIAGRAMS: 
Let X = {1,2,3},Y′={a, b, c, d}, Y={a, b, c, d, e} and Z ={x, y, z}.  Define functions 
f:X→Y′ and g: X →Z by the arrow diagrams: 
 

 

 
 
EXERCISE: 
Let A = {1,2,3,4,5} and we define functions f:A →A and then g:A→A : 
              f(1)=3,    f(2)=5,   f(3)=3,   f(4)=1, f(5)=2 
              g(1)=4,   g(2)=1,   g(3)=1,  g(4)=2,  g(5)=3 
Find the composition functions fog and gof. 
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SOLUTION: 
We are the definition of the composition of functions and compute: 
 (fog) (1) = f(g(1)) = f(4) = 1 
 (fog) (2) = f(g(2)) = f(1) = 3 
 (fog) (3) = f(g(3)) = f(1) = 3 
 (fog) (4) = f(g(4)) = f(2) = 5 
 (fog) (5) = f(g(5)) = f(3) = 3 
Also 
            (gof) (1) = g(f(1)) = g(3) = 1 
            (gof) (2) = g(f(2)) = g(5) = 3 
            (gof) (3) = g(f(3)) = g(3) = 1 
            (gof) (4) = g(f(4)) = g(1) = 4 
            (gof) (5) = g(f(5)) = g(2) = 1 
 
REMARK: The functions fog and gof are not equal. 
COMPOSITION OF FUNCTIONS DEFINED BY FORMULAS: 
Let f: Z →Z and g:Z → Z be defined by 
 f(n) = n+1 for n∈Z 
 and g(n) = n2 for n∈Z 
     a. Find the compositions gof and fog. 
     b. Is gof = fog? 
SOLUTION: 
     a. By definition of the composition of functions 
            (gof) (n) = g(f(n)) = g(n+1) = (n+1) 2 for all n ∈Z and 
            (fog) (n) = f(g(n)) = f(n2) = n2+1 for all n ∈Z 
     b. Two functions from one set to another are equal if, and only if, they   
  take the same values. 
  In this case, 
           
 (gof)(1) =g(f(1))= (1 + 1) 2 = 4  where as 
            
  (fog)(1) = f(g(1))=12 + 1 = 2 
  Thus fog ≠ gof 
 
REMARK: The composition of functions is not a commutative operation. 
 
COMPOSITION WITH THE IDENTITY FUNCTION: 
Let X = {a,b,c,d} and Y={u,v,w} and suppose f:X→Y be defined by: 
 f(a) = u, f(b) = v, f(c) = v, f(d) = u 
Find foix and iyof, where ix and iy are identity functions on X and Y respectively. 
 
SOLUTION: 
The values of foix on X are obtained as: 
(foix) (a) = f(ix(a)) = f(a) = u 
(foix) (b) = f(ix(b)) = f(b) = v 
(foix) (c) = f(ix(c)) = f(c) = v 
(foix) (d) = f(ix(d)) = f(d) = u 
For all elements x in X   (foix)(x) = f(x) so that foix = f 
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The values of iyof on X are obtained as: 
(iyof)(a)=iy(f(a)) = iy (u) = u 
(iyof)(b)=iy (f(b)) = iy (v) = v 
(iyof)(c)=iy (f(c)) = iy (v) = v 
(iyof)(d)=iy (f(d)) = iy (u) = u 
For all elements x in X (iyof)(x) = f(x) so that iyof = f 
 
COMPOSING A FUNCTION WITH ITS INVERSE: 
Let  X = {a,b,c} and Y= {x,y,z}. Define f:X→Y by the arrow diagram. 
 

a
b
c

x
y
z

X Yf

i.e. f(a) = z

f(b) = x

f(c) = y

 
Then f is one-to-one and onto. So f-1 exists and is represented by the arrow diagram 
Below.  

i.e. f-1(x) = b

f-1(y) = c

f-1(z) = a

a
b
c

x
y
z

XY f-1

 
  
f-1of is found by following the arrows from X to Y by f and back to X by f-1. 
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a

b

c

x

y

z

a

b

c

X Y Xf f-1

 
 
 
Thus, it is quite clear that 
(f-1of)(a) = f-1(f(a)) = f-1(z) = a 
(f-1of)(b) = f-1(f(b)) = f-1(x) = b and  (f-1of)(c) = f-1(f(c)) = f-1 (y) = c 
 
REMARK 1: 
f-1of : X →X sends each element of X to itself. So by definition of identity function  
on X.      f-1of = ix 
Similarly, the composition of f and f-1 sends each element of Y to itself. Accordingly   
   fof-1 = iy 
REMARK2:  
The function f: X →Y and g:Y →X are inverses of each other iff 
           gof = ix and fog = iy 
EXERCISE: 
Let f: R →R and g:R →R be defined by 
 
  f(x) = 3x + 2  for all x∈R 
  
 and g(x) =    for all x∈R 
 
Show that f and g are inverse of each other.  
 
SOLUTION: 
f and g are inverse of each other iff their composition gives the identity function. Now for 
all x ∈R 
 
 
 
 
 
 
 
 
 

( )( ) ( ( ))
(3 2) (by definition of f)

(3 2) 2 (by definition of g)
3

3
3

gof x g f x
g x

x

x x

=
= +

+ −
=

= =

3
2−x
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Thus (gof)(x) = x = (fog)(x) 
Hence gof and fog are identity functions. Accordingly f and g are inverse of each other. 

( )( ) ( ( ))
(3 2) (by definition of g)

(3 2) 2 (by definition of f)
3

( 2) 2

fog x f g x
g x

x

x
x

=
= +

+ −
=

= − +
=
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Lecture No.18   Composition of Functions 
 
 

THEOREM: 
   If f and g are two one-to-one functions, then their composition gof is one-to-one. 

 
PROOF: 

We are taking functions f: X →Y and g: Y →Z are both one-to-one functions.      
 

Suppose x1, x2 ∈X such that   
          (gof) (x1) = (gof) (x2)                         
⇒       g(f(x1)) = g(f(x2))           (definition of composition) 
 

            Since g is one-to-one, therefore            
          f(x1) = f(x2) 

Since f is one-to-one, therefore                   
           x1 = x2 

Thus, we have shown that  if  
        (gof) (x1) = (gof)(x2) then x1 = x2 

Hence, gof is one-to-one. 
 
THEOREM: 

If f: X→Y and g: Y → Z are both onto functions, then gof:X → Z is onto. 
PROOF: 
               Suppose f: X →Y and g: Y →Z are both onto functions.  
We must show that gof: X →Z is onto.  
Let z∈Z  Since g:Y →Z is onto, so for  z∈Z, there exists  y∈Y such that g(y)=z.  
Further, since f: X →Y is onto, so for y∈Y, there exists x∈X such that f(x) = y. 
 
Hence, there exists an element x in X such that  
                             (gof) (x) = g(f(x)) = g(y) = z 
 
Thus, gof: X →Z is onto. 
 
THEOREM: 

If f: W →X, g:X →Y, and h:Y →Z are functions, then  
    (hog)of = ho(gof) 
PROOF: 
 The two functions are equal if they assign the same image to each element in the 
domain, that is,  
  ((hog)of)(x) = (ho(gof)) (x) for every x ∈W 
Computing  
  ((hog)of)(x) = (hog)(f(x)) = h(g(f(x))) 
and             (ho(gof)) (x) = h ((gof)(x)) = h (g(f(x))) 
Hence             (hog)of = ho(gof) 
 
REMARK: The composition of functions is associative. 
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EXERCISE: 
Suppose f:X→Y and g:Y→Z and both of these are one-to-one and onto. Prove 
that (gof) -1 exists and that 

     (gof) -1 = f-1og-1 
SOLUTION: 

Suppose f: X →Y and g:Y →Z are bijective functions, then their      
composition gof: X →Z is also bijective. Hence (gof) -1: Z →X exists. 

             Next, to establish (gof) -1 = f-1og-1, we show that 
             (f-1og-1)o(gof) = ix and (gof)o(f-1og-1) = iz 
Now consider  
(f-1og-1)o(gof) = f-1o(g-1o(gof)) (associative law for o) 
  = f-1o((g-1og)of) (associative law for o) 
  = f-1o(iyof)  (g-1og = iy) 
  = f-1of  (iyof = f) 
  = ix  (f:X→Y) 
Also 
(gof)o(f-1og-1) = go(fo(f-1og-1)) (associative law for o) 
  = go((fof-1)og-1) (associative law for o) 
  = go(iyog-1) (fof-1 = iy) 
  = gog-1  (iyog-1 = g-1) 
  = Iz  (g:Y→Z) 
 Hence f-1og-1   = (gof) -1 

 
REAL-VALUED FUNCTIONS: 

Let X be any set and R be the set of real numbers.A function f:X→R that assigns 
to each x∈X a real number f(x) ∈R is called a real-valued function. 
If f: R →R, then f is called a real-valued function of a real variable. 
 
EXAMPLE: 
  1. f: R+→R defined by f(x) = log x is a real valued function. 
  2. g:R →R defined by g(x) = ex is a real valued function of  a real variable. 
 
OPERATIONS ON FUNCTIONS: 
SUM OF FUNCTIONS: 

Let f and g be real valued functions with the same domain X.  
That is f:X →R and g:X →R.  

 
The sum of f and g denoted by f+g is a real valued function with the same domain X  
i.e. f+g: X →R defined by 
  (f+g)(x) = f(x) + g(x) ∀ x∈X 
 
EXAMPLE: 
                 Let f(x) = x2 + 1 and g(x) = x + 2 defines functions f and g from R to R. 
                 Then     (f+g) (x) =  f(x) + g(x) 
       = (x2 + 1) + (x + 2) 
       = x2 + x + 3 ∀x∈R 
which defines the sum functions f+g: X →R 
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DIFFERENCE OF FUNCTIONS: 
Let f: X →R and g:X →R be real valued functions. The difference of f and g denoted by 
f-g which is a function from X to R defined by 
  (f-g)(x) = f(x) - g(x) ∀ x∈X 
EXAMPLE: 

Let f(x) = x2 + 1 and g(x)=x+2 define functions f and g from R to R. 
Then  
(f-g) (x) =  f(x) - g(x) 

   =  (x2 + 1) - (x + 2) 
   = x2 - x – 1  ∀x∈R 
which defines the difference function f-g: X →R 
 
PRODUCT OF FUNCTIONS: 
 Let f: X →R and g:X →R be real valued functions. The product of f and g denoted f.g  or 
simply fg is a function from X to R defined by 
  (f . g)(x) = f(x) . g(x) ∀ x∈X 
 
EXAMPLE: 
                    Let f(x) = x2 + 1 and g(x)=x + 2 
                    define functions f and g from R to R. 
         Then (f . g) (x) = f(x) . g(x) 
                  = (x2 + 1) . (x + 2) 
                  = x3 + 2x2 + x + 2 ∀x∈R 
which defines the product function f . g: X →R 
 
QUOTIENT OF FUNCTIONS: 

Let f: X→R and g: X →R be real valued functions. The quotient of f by g denoted  by f
g

     

is a function from X to R defined by 
 
 
 
 
 
EXAMPLE: 
Let f(x) = x2 + 1 and g(x) = x + 2 defines functions f and g from R to R. 
Then 
 
 
 
 
  
 

which defines the quotient function     f
g

 : X → R. 

 
 
 
 

( )( ) , ( ) 0.
( )

f f xx where g x is not equal to
g g x

⎛ ⎞
=⎜ ⎟

⎝ ⎠

( )( ) & ( ) 0
( )

f f xx x X g x
g g x

⎛ ⎞
= ∀ ∈ ≠⎜ ⎟

⎝ ⎠

( )( ) & ( ) 0
( )

f f xx x X g x
g g x

⎛ ⎞
= ∀ ∈ ≠⎜ ⎟

⎝ ⎠
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SCALAR MULTIPLICATION: 
Let f: X →R be a real valued function and c is a non-zero number. Then the scalar 
multiplication of f is a function c⋅f: R →R defined by  (c⋅f)(x) = c⋅f(x) ∀x∈X 
 
EXAMPLE: 
Let f(x) = x2 + 1 and g(x) = x+2 defines functions f and g from R to R.  
Then 
         (3f - 2g)(x) =(3f)(x) - (2g)(x) 
                           =3 ⋅ f(x) - 2 ⋅ g(x) 
                          = 3(x2+1) - 2 (x+2) 
                          = 3x2 - 2x-1    ∀x∈X 
EXERCISE : 
If f: R →R and g: R → R are both one-to-one, is f+g also one-to-one?  
 
SOLUTION: 
Here f+g is not one-to-one 
As a counter example; define f: R →R and g: R →R by 
        f(x) = x and g(x) = -x ∀x∈R 
Then obviously both f and g are one-to-one 
Now  
       (f+g)(x) = f(x) + g(x) = x + (-x) = 0 ∀x∈R 
 
Clearly f+g is not one-to-one because 
       (f+g)(1) = 0 and (f+g) (2) = 0 but 1≠2 
 
EXERCISE: 
If f:R→R and g:R →R are both onto, is f+g also onto? Prove or give a counter example. 
 
SOLUTION: 
f+g is not onto, as a counter example,  
define f:R →R and g:R →R by 
             f(x) = x  and  g(x) = - x             ∀x∈R 
 
Then obviously both f and g are onto. 
  Now (f+g)(x) = f(x) + g(x) 
             = x + (-x) 
                        = 0 ∀x∈R 
Clearly f+g is not onto because only 0∈R has its pre-image in R and no non-zero element 
of co-domain R is the image of any element of R. 
 
EXERCISE: 
Let f: R →R be a function and c(≠ 0)∈R. 
1. If f is one-to-one, is c⋅f also one-to-one?  
2. If f is onto, is c⋅f also onto?  
 
SOLUTION: 
1. Suppose f: R →R is one-to-one and c(≠ 0)∈R 
            Let  (c⋅f)(x1) = (c⋅f)(x2) for x1, x2 ∈ R 
                   ⇒    c⋅f (x1) = c⋅f (x2)  (by definition of c⋅f) 



18- Composition of functions    VU                       
 
 

 
© Copyright Virtual University of Pakistan 

138

                   ⇒       f(x1) = f(x2)  (dividing by c≠0) 
           Since f is one-to-one, this implies 
                                    x1 = x2 
           Hence c⋅f; R →R is also one-to-one. 
2.        Suppose f: R →R is onto and (c≠0) ∈R. 
           Let y ∈R. We search for an x ∈R such that 
  (c⋅f) (x) = y  (1) 
 ⇒  c⋅f(x)   =y (by definition of c⋅f) 

 ⇒      f(x) = y
c

  (dividing by c≠0) 

Since f: R →R is onto, so for  y
c

 ∈R, there exists some x∈R  

such that the above equation is true; and this leads back to equation (1). 
Accordingly c⋅f: R →R is also onto. 
 
EXERCISE: 
The real-valued function 0x:X →R which is defined by  
  0x(x) = 0 for all x ∈X 
is called the zero function (on X). 
Prove that for any function f: X →R 
     1. f + 0x = f   
     2. f ⋅0x = 0x 
 
 
SOLUTION: 
1. Since (f + 0x)(x)= f(x) + 0x(x) 
        = f(x) + 0 
        = f(x)       ∀x∈X 
           Hence           f+0x= f 
 
2.        Since (f ⋅ 0x)(x)= f(x) ⋅ 0x(x) 
      = f(x) ⋅ 0 
      = 0  
      = 0x(x)  ∀x∈X 
           Hence        f ⋅ 0x = 0x 
 
EXERCISE: 
Given a set S and a subset A, the characteristics function of A, denoted χA, is the function 
defined from S to the set {0,1} defined as 
 

( )
1
0A

if x
x

if x
χ

∈ Α⎧
= ⎨ ∉ Α⎩

  

 
EXERCISE: 
Show that for all subsets A and B of S 
       1.  χA∩B = χA ⋅ χ B 
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       2.   χ A ∪ B = χ A  + χ B - χ A⋅ χ B 
       3.   χ A(x) = 1 - χA(x) 
 
SOLUTION: 
1. Prove that χA∩B = χ A ⋅ χ B 
 Let x ∈ A∩B; therefore x ∈A and x ∈B. Then 
 χ A∩B(x) = 1;  χ A(x)=1;  χ B(x)=1 
Hence χ A∩B(x) = 1 = (1) (1)=χ A(x) χ B(x) 
            =(χ A⋅ χ B) (x) 
Next, let y ∈(A∩B)′ 
         ⇒ y ∈A ′ ∪B ′ 
         ⇒ y ∈A′ or y ∈B′ 
Now y ∈(A∩B)′ i.e y ∉(A ∩ B)  
        ⇒ χ(A∩B)(y) = 0 
and      y ∈A′or  y ∈B′   
        ⇒χ A(y) = 0 (as y∉A)  or  χ B(y) = 0  (as y∉B) 
Thus χ A∩B(y) = 0 =(0) (0)= χ A(y)  χ B(y) 
                      =  (χA⋅ χ B)(y) 
Hence, χ A∩B and χ A⋅ χ B assign the same number to each element x in S, so by definition 
      χ A∩B = χ A⋅ χ B  
SOLUTION: 
2. Prove that χA∪B  = χ A+ χ B- χ A ⋅ χ B 
 Let x∈A∪B then x ∈A or x ∈B 
Now χ A∪B(x) = 1 and  χ A(x) = 1  or  χ B(x) = 1 
Three cases arise depending upon which of χ A(x) or χ B(x) is 1. 
CASE-I ( if  χ A(x)) = 1 & χ B(x) = 1) 
Now  χ A (x) + χ B(x) - χ A(x) ⋅ χ B(x) 
   = 1 + 1 - (1) (1) 
   = 1=  χ A∪B (x)  
 
CASE-II (if  χ A(x) = 1;   χ B(x) = 0) 
Now χ A(x) + χ B(x) - χ A(x)⋅ χ B(x) 
 = 1 + 0 - (1) (0) 
 = 1 
 = χ A ∪ B(x)  
 
CASE III  (if  χ A(x) = 0;  χ B(x) = 1) 
Now χ A(x) + χ B(x) - χ A(x)⋅ χ B(x) 
 = 0 + 1 + (0) (1) 
 = 1 
 = χ A ∪ B(x)  
Thus in all cases 
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χ A ∪ B(x) = 1 = χ A(x) + χ B(x) - χ A(x)⋅ χ B(x)  ∀x∈A∪B 
Next let y∉A∪B. Then y∈(A∪B)′ 
⇒ y∈A′∩B′ (DeMorgan’s Law) 
⇒        y∈A′ and y∈B′  
⇒        y ∉ A and y ∉ B 
Thus    χ A ∪ B(y) = 0;  χ A(y) = 0;   χ B(y) = 0 
 
Consider χ A(y) + χ B(y) - χ A(y)⋅ χ B(y)  
    = 0 + 0 - 0 
    = 0 
    = χ A ∪ B(y) 
Hence for all elements of S 
χ A∪B= χ A+ χ B- χ A⋅ χ B 
 
SOLUTION: 
3. Prove that χ A (x) = 1 - χ A(x) 
 Let x ∈ A  .Then x∉A and so 
            χ A (x) = 1 and χ A(x) = 0    
∴  χ A (x) = 1 = 1 - 0 = 1 - χ A(x)  (1) 
 
Also if y∈A, then y∉ A  and so 
 χ A(y) =1  and  χ A (y) = 0 
∴  χ A (y) = 0 = 1 - 1 = 1 - χ A(y)  (2) 
By (1) and (2), for all elements of S 
 χ A(x) = 1 - χ A(x) 
 
EXERCISE: 
If F, G and H are functions from A = {1,2,3} to A what must be true if. 
       1.    F is reflexive?          
       2.    G is symmetric? 
       3.    H is transitive, onto function?                      
 
SOLUTION: 
1. F is reflexive iff every element of A is related to itself i.e.aFa ∀a∈A. Also F is a 
function from A to A, so each element of A is related to a unique (one and only one) 
element of A. Hence, F maps each element of A to itself so that F is an identity function. 
  

1

2

3

1

2

3

A A
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2. G is symmetric iff  if  aGb then bGa ∀a,b∈A .Now, in the present case. 
 

1

2

3

1

2

3

A A

1

2

3

1

2

3

A A

 
i.e. G is both one-to-one and onto (a bijective function) 
 
3. H is transitive iff if aHb and bHc then aHc.  ∀a,b,c∈A.  
            In our case 

1

2

3

1

2

3

A A

1

2

3

1

2

3

A A

H  
 
is transitive, onto function if and only if it is an identity function. 
 
FINITE AND INFINITE SETS 
 
FINITE SET: 
A set is called finite if, and only if, it is the empty set or there is one-to-one 
correspondence from {1,2,3,…,n} to it, where n is a positive integer. 
 
INFINITE SET: 
A non empty set that cannot be put into one-to-one correspondence with {1,2,3,…,n}, for 
any positive integer n, is called infinite set. 
 
CARDINALITY: 
Let A and B be any sets. A has the same cardinality as B if, and only if, there is a one-to- 
one correspondence from A to B(Cardinality means “the total number of elements in a 
set) . 
Note: One-to-One correspondence means the condition of One-One and Onto. 
 
COUNTABLE SET: 
A set is countably infinite if, and only if, it has the same cardinality as the set of positive 
integers Z+. 
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A set is called countable if, and only if, it is finite or countably infinite. 
A set that is not countable is called uncountable. 
 
EXAMPLE: 
The set Z of all integers is countable. 
 
SOLUTION: 
We find a function from the set of positive integers Z+ to Z that is one-to-one and onto. 
Define f: Z+ →Z by 
 
     
                                 f(n) =  
 
 
Then f  clearly maps distinct elements of Z+ to distinct integers. Moreover, every integer 
m is the image of some positive integer under f. Thus f is bijective and so the set Z of all 
integers is countable (countably infinite). 
 
EXERCISE: 
Show that the set 2Z of all even integers is countable. 
 
SOLUTION: 
Consider the function h from Z to 2Z defined as follows 
                                h(n) = 2n  for all n∈Z  
Then clearly h is one-to-one. For if 
                                h(n1) = h(n2)  then  
                                  2n1 = 2n2     (by definition of h) 
   ⇒ n1 = n2 
Also every even integer 2n is the image of integer n under h. Hence h is onto as well. 
Thus h:Z →2Z is bijective. Since Z is countable, it follows that 2Z is countable. 
IMAGE OF A SET: 
Let f : X →Y be a function and A ⊆ X. 
The image of A under f is denoted and defined as: 
                         f(A) = {y∈Y | y = f(x), for some x in A} 
 
EXAMPLE: 
 Let f: X →Y be defined by the arrow diagram 
 

1
2
3
4

.a
b
c

f

Let A = {1,2}and B = {2,3} then

f(A)={b} and f(B) = {b,c}

 
 

⎪
⎩

⎪
⎨

⎧

− integer positive oddan  isn  if
2
1

integer positiveeven an  isn  if
2
n-

n
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INVERSE IMAGE OF A SET: 
Let f: X →Y be a function and C ⊆ Y. 
The inverse image of C under f is denoted and defined as: 
f-1(C)={x ∈X | f(x) ∈C} 
 
EXAMPLE: 
Let f: X →Y be defined by the arrow diagram. 
 
 
 

1

2

3

4

a

b
c

d

X Y

 
 
Let C = {a},D = {b,c},E = {d} then f-1(C)={1,2},  
    f-1(D) = {3,4}, and   f-1(E) =∅ 
 
 
SOME RESULTS 
 
Let f: X →Y is a function. Let A and B be subsets of X and C and D be subsets of Y. 
1. if A⊆ B then f(A) ⊆ f(B) 
2. f(A∪B) = f(A) ∪f(B) 
3. f(A∩B) ⊆ f(A) ∩ f(B) 
4. f(A-B) ⊇ f(A) - f(B) 
5. if C ⊆ D, then f-1(C) ⊆ f-1(D) 
6. f-1(C∪D) = f-1(C) ∪ f-1(D) 
7. f-1(C∩D) = f-1(C) ∩f-1(D) 
8. f-1(C-D) = f-1(C) - f-1(D) 
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Lecture No.19   Sequence 
 
 

SEQUENCE: 
A sequence is just a list of elements usually written in a row. 
 
EXAMPLES: 
1. 1, 2, 3, 4, 5, … 
2. 4, 8, 12, 16, 20,… 
3. 2, 4, 8, 16, 32, … 
4. 1, 1/2, 1/3, 1/4, 1/5, … 
5. 1, 4, 9, 16, 25, … 
6. 1, -1, 1, -1, 1, -1, … 
 
NOTE:  The symbol “…” is called ellipsis, and reads “and so forth” 
 
FORMAL DEFINITION: 
A sequence is a function whose domain is the set of integers greater than or equal to a 
particular integer n0.  Usually this set is the set of Natural numbers {1, 2, 3, …} or the set 
of whole numbers {0, 1, 2, 3, …}. 
 
NOTATION: 
We use the notation an to denote the image of the integer n, and call it a term of the 
sequence. Thus 
  a1, a2, a3, a4 …, an, … 
represent  the terms of a sequence defined on the set of natural numbers N.  
Note that a sequence is described by listing the terms of the sequence in order of 
increasing subscripts. 

FINDING TERMS OF A SEQUENCE GIVEN BY AN EXPLICIT 
FORMULA: 
An explicit formula or general formula for a sequence is a rule that shows how the values 
of ak depends on k. 
 
EXAMPLE: 
Define a sequence a1, a2, a3, … by the explicit formula 
 
 
 
The first four terms of the sequence are: 
 
 
 
 
 
 
 
 
 

for all integers 1
1k

ka k
k

= ≥
+

1 2 3

4

1 1 2 2 3 3, ,
1 1 2 2 1 3 3 1 4

4 4
4 1 5

a a a

and fourth term is a

= = = = = =
+ + +

= =
+
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EXAMPLE: 
Write the first four terms of the sequence defined by the formula 
 bj = 1 + 2j, for all integers j ≥ 0 
 
SOLUTION: 
b0 = 1 + 20 = 1 + 1 = 2 
b1 = 1 + 21 = 1 + 2 = 3 
b2 = 1 + 22 = 1 + 4 = 5 
b3 = 1 + 23 = 1 + 8 = 9 
 
REMARK: 
The formula bj = 1 + 2 j , for all integers j ≥ 0 defines an infinite sequence having infinite 
number of values. 
 
EXERCISE: 
Compute the first six terms of the sequence defined by the formula       
 Cn = 1+ (-1) n for all integers n ≥ 0 
 
SOLUTION : 
C0 = 1 + (-1) 0= 1 + 1 = 2  C1 = 1 + (-1)1 = 1 + (-1) = 0 
C2 = 1 + (-1)2 = 1 + 1 = 2  C3 = 1 + (-1)3 = 1 + (-1) = 0 
C4 = 1 + (-1)4 = 1 + 1 = 2  C5 = 1 + (-1)5 = 1 + (-1) = 0 
 
REMARK: 
            1)   If n is even, then Cn = 2  and if n is odd, then Cn = 0 
                  Hence, the sequence oscillates endlessly between 2 and 0. 
            2)  An infinite sequence may have only a finite number of values. 
 
EXAMPLE: 
Write the first four terms of the sequence defined by 
 
 
 
SOLUTION: 
 
 
 
 
 
 
REMARK:A sequence whose terms alternate in sign is called an alternating sequence. 
 
EXERCISE: 
Find explicit formulas for sequences with the initial terms given: 
1) 0, 1, -2, 3, -4, 5, … 
 
SOLUTION: 
 an = (-1) n+1n for all integers n ≥ 0 
 
 

( 1) for all integers 1
1

n

n
nC n

n
−

= ≥
+

1 2 3

1 2 3

4

4

( 1) (1) 1 ( 1) (2) 2 ( 1) (3) 3, ,
1 1 2 2 1 3 3 1 4

( 1) (4) 4
4 1 5

C C C

And fourth term isC

− − − − −
= = = = = =

+ + +
−

= =
+
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2)        
 
SOLUTION: 
 
 
 
3) 2, 6, 12, 20, 30, 42, 56, … 
SOLUTION: 
 Cn = n (n + 1) for all integers n ≥ 1 
 
 
4) 1/4, 2/9, 3/16, 4/25, 5/36, 6/49, … 
 
 
SOLUTION: 
 
 
OR 
 
 
 
 
ARITHMETIC SEQUENCE: 
A sequence in which every term after the first is obtained from the preceding term by 
adding a constant number is called an arithmetic sequence or arithmetic progression 
(A.P.) 
The constant number, being the difference of any two consecutive terms is called the 
common difference of A.P., commonly denoted by “d”. 
 
EXAMPLES: 
1. 5, 9, 13, 17, …  (common difference = 4) 
2. 0, -5, -10, -15, …  (common difference = -5) 
3. x + a, x + 3a, x + 5a, … (common difference = 2a) 

GENERAL TERM OF AN ARITHMETIC SEQUENCE: 
Let a be the first term and d be the common difference of an arithmetic sequence. Then 
the sequence is    a, a+d, a+2d, a+3d, … 
If ai, for i ≥ 1, represents the terms of the sequence then 
                           a1 = first term = a = a + (1-1) d 
                           a2 = second term = a + d = a + (2-1) d 
                           a3 = third term = a + 2d = a + (3 -1) d 
       By symmetry 
                           an = nth term = a + (n - 1)d for all integers n  ≥1. 
 
 
 
EXAMPLE: 
Find the 20th term of the arithmetic sequence 
 3, 9, 15, 21, … 

1 1 1 1 1 1 11 , , , ,
2 2 3 3 4 4 5

− − − − "

1 1 for all integers 1
1kb n

k k
= − ≥

+

2 for all integers   1
( 1)i

id i
i

= ≥
+

2

1 for all integers   0
( 2)j

jd j
j

+
= ≥

+
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SOLUTION: 
 Here a = first term = 3 
 d = common difference = 9 - 3 = 6 
 n = term number = 20 
 a20 = value of 20th term = ? 
Since an = a + (n - 1) d; n ≥1 
∴       a20 = 3 + (20 - 1) 6 
     = 3 + 114 
     = 117  
 
EXAMPLE: 
Which term of the arithmetic sequence 
  4, 1, -2, …, is -77 
 
SOLUTION: 
 Here a = first term = 4 
 d = common difference = 1 - 4 = -3 
 an = value of nth term = - 77 
 n = term number = ? 
Since  
 an = a + (n - 1) d  n ≥1 
⇒        - 77 = 4 + (n - 1) (-3) 
⇒ - 77 - 4 = (n - 1) (-3) 
OR 
 
OR 
  27 = n – 1 
  n = 28 
Hence –77 is the 28th term of the given sequence. 
 
EXERCISE: 
Find the 36th term of the arithmetic sequence whose 3rd term is 7 and 8th term is 17. 
 
SOLUTION: 
Let a be the first term and d be the common difference of the arithmetic sequence. 
 Then  
            an = a + (n - 1)d  n ≥ 1 
⇒ a3 = a + (3 - 1) d 
and a8 = a + (8 - 1) d 
Given that a3 = 7 and a8 = 17. Therefore 
 7 = a + 2d……………………(1) 
and     17 = a + 7d………….………..(2) 
Subtracting (1) from (2), we get, 
 10 = 5d    
⇒ d = 2 
Substituting d = 2 in (1) we have  
 7 = a + 2(2)  
which gives a = 3 

81 1
3

n−
= −

−
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Thus, an = a + (n - 1) d 
 an = 3 + (n - 1) 2 (using values of a and d) 
Hence the value of 36th term is 
 a36 = 3 + (36 - 1) 2 
      = 3 + 70 
      = 73 
 
GEOMETRIC SEQUENCE: 
A sequence in which every term after the first is obtained from the preceding term by 
multiplying it with a constant number is called a geometric sequence or geometric 
progression (G.P.) 
The constant number, being the ratio of any two consecutive terms is called the common 
ratio of the G.P. commonly denoted by “r”. 
 
EXAMPLE: 
1. 1, 2, 4, 8, 16, …  (common ratio = 2) 
2. 3, - 3/2, 3/4, - 3/8, …  (common ratio = - 1/2) 
3. 0.1, 0.01, 0.001, 0.0001, … (common ratio = 0.1 = 1/10) 
 
GENERAL TERM OF A GEOMETRIC SEQUENCE: 
Let a be the first tem and r be the common ratio of a geometric sequence. Then the 
sequence is a, ar, ar2, ar3, …  
If ai, for i ≥ 1 represent the terms of the sequence, then 
 a1 = first term = a = ar1-1 
 a2 = second term = ar = ar2-1 
 a3 = third term = ar2 = ar3-1 
 ……………… 
 ……………… 
 an = nth term = arn-1; for all integers n ≥ 1 
 
EXAMPLE: 
Find the 8th term of the following geometric sequence  
  4, 12, 36, 108, … 
SOLUTION: 
 Here a = first term = 4 
 r = common ratio =           = 3 
 n = term number = 8 
 a8 = value of 8th term = ? 
 
Since an = arn-1; n ≥ 1 
⇒ a8 = (4)(3)8-1 

     = 4 (2187) 
                = 8748 
 
EXAMPLE: 
Which term of the geometric sequence is 1/8 if the first term is 4 and common ratio ½ 
 
SOLUTION: 
Given a = first term = 4 
 r = common ratio = 1/2 

12
4



19-Sequence      VU                       
 
 

 
© Copyright Virtual University of Pakistan 

149

 an = value of the nth term = 1/8 
 n = term number = ? 
Since an = arn-1 n ≥ 1 
 
 
 
 
 
 
 
 
 
 
 
Hence 1/8 is the 6th term of the given G.P. 
 
EXERCISE: 
Write the geometric sequence with positive terms whose second term is 9 and fourth term 
is 1. 
 
SOLUTION: 
Let a be the first term and r be the common ratio of the geometric sequence. Then 
  an = ar n-1  n ≥1 
Now  a2 = ar 2-1 
⇒  9  = ar………………….(1) 
Also  a4 = ar4-1 
  1  = ar 3 …………………(2) 
 
Dividing (2) by (1), we get, 
 
 
 
 
 
 
 
Substituting r = 1/3 in (1), we get 
 
 
 
 
 
Hence the geometric sequence is 
 27, 9, 3, 1, 1/3, 1/9, … 
 
SEQUENCES IN COMPUTER PROGRAMMING: 
An important data type in computer programming consists of finite sequences known as 
one-dimensional arrays; a single variable in which a sequence of variables may be stored. 
 
 

1

1

5 1

1 14
8 2

1 1
32 2

1 1
2 2

1 5 6

n

n

n

n n

−

−

−

⎛ ⎞⇒ = ⎜ ⎟
⎝ ⎠

⎛ ⎞⇒ = ⎜ ⎟
⎝ ⎠

⎛ ⎞ ⎛ ⎞⇒ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⇒ − = ⇒ =

3

2

1
9
1
9

1 1rejecting 
3 3

ar
ar

r

r r

=

⇒ =

⎛ ⎞⇒ = = −⎜ ⎟
⎝ ⎠

19
3

9 3 27

a

a

⎛ ⎞= ⎜ ⎟
⎝ ⎠

⇒ = × =
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EXAMPLE: 
The names of k students in a class may be represented by an array of k elements “name” 
as: 
 name [0], name[1], name[2], …, name[k-1] 
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Lecture No.20   Series 
 
 

SERIES: 
The sum of the terms of a sequence forms a series. If  a1, a2, a3, …  
represent a sequence of numbers, then the corresponding series is  
 
a1 + a2 + a3 + … 
 
SUMMATION NOTATION: 
The capital Greek letter sigma ∑ is used to write a sum in a short hand notation. 
where k varies from 1 to n represents the sum given in expanded form by 
= a1 + a2 + a3 + … + an 
More generally if m and n are integers and m ≤ n, then the summation from k equal m to 
n of ak is 
 
 
 
Here k is called the index of the summation;  m the lower limit of the summation and n 
the upper limit of the summation. 
 
COMPUTING SUMMATIONS: 
Let a0 = 2, a1 = 3, a2 = -2, a3 = 1 and a4 = 0.Compute each of the summations: 
 
  
 
 
SOLUTION: 
 
(a)                  = a0 + a1 + a2 + a3 + a4  
                      = 2 + 3 + (-2) + 1 + 0  = 4 
 
(b)                      = a0 + a2 + a4 
                          = 2 + (-2) + 0  = 0 
 
(c)                  = a1 
                      = 3   
 
EXERCISE: 
 
Compute the summations 

3

1
1. (2 1) [2(1) 1] [2(2) 1] [2(3) 1]

1 3 5
9

i
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− = − + − + −
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∑
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SUMMATION NOTATION TO EXPANDED FORM: 
 
 
Write the summation                          to   expanded form. 
 
SOLUTION:  
  
 
 
 
 
 
  
 
 
EXPANDED FORM TO SUMMATION NOTATION: 
Write the following using summation notation: 
 
  
 
 
SOLUTION: 
We find the kth term of the series. 
The numerators forms an arithmetic sequence 1, 2, 3,…, n+1, in which  
            a = first term = 1 
&         d = common difference = 1 
            ak = a + (k - 1)d 

          = 1 + (k - 1) (1) = 1 + k - 1 = k 
 
Similarly, the denominators forms an arithmetic sequence            
   n, n+1, n+2, …, 2n, in which  
            a = first term = n 
           d = common difference = 1 
∴        ak = a + (k - 1) d 
     = n + (k - 1) (1) 
                = k + n - 1 
Hence the kth term of the series is 
 
 
 
And the expression for the series is given by  
 

1
3 3 3 3

1
2. ( 2) [( 1) 2] [(0) 2] [(1) 2]

[ 1 2] [0 2] [1 2]
1 2 3
6

k
k

=−

+ = − + + + + +

= − + + + + +
= + +
=

∑

0

( 1)
1
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i i=

−
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0 1 2 3

0

( 1) ( 1) ( 1) ( 1) ( 1) ( 1)
1 0 1 1 1 2 1 3 1 1

i nn
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− − − − − −
= + + + + +
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1 ( 1) 1 ( 1) ( 1)
1 2 3 4 1

1 1 1 ( 1)1
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−
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n n n n

+
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+ +
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TRANSFORMING A SUM BY A CHANGE OF VARIABLE: 
 
Consider 
 
 
 
and 
 
 
Hence 
  
The index of a summation can be replaced by any  other symbol. The index of a 
summation is therefore  called a dummy variable. 
 
EXERCISE: 
Consider 
 
 
Substituting k = j + 1 so that j = k – 1 
When k = 1, j = k - 1 = 1 - 1 = 0 
When k = n + 1, j = k - 1 = (n + 1) - 1 = n 
Hence 
 
 
 
 
 
 
 
  
Transform by making the change of variable j = i - 1, in the summation 
 
 ** 
 
PROPERTIES OF SUMMATIONS: 
 
 
 
 
 c∈R 
 
 

1

1

1 2 3 1
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n

k
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n n n n n k
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EXERCISE: 
Express the following summation more simply: 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ARITHMETIC SERIES: 
The sum of the terms of an arithmetic sequence forms an arithmetic series (A.S). For 
example 
  1 + 3 + 5 + 7 + … 
is an arithmetic series of positive odd integers. 
In general, if a is the first term and d the common difference of an arithmetic series, then 
the series is given as:  a + (a+d) + (a+2d) +… 
 
SUM OF n TERMS OF AN ARITHMETIC SERIES: 
Let a be the first term and d be the common difference of an arithmetic series. Then its 
nth term is: 
 an = a + (n - 1)d; n ≥ 1 
If Sn denotes the sum of first n terms of the A.S, then 
 Sn =  a + (a + d) + (a + 2d) + … + [a + (n-1) d] 
     =  a + (a+d) + (a + 2d) + … + an 
     =  a + (a+d) + (a + 2d) + … + (an - d) + an ………(1) 
where an = a + (n - 1) d 
Rewriting the terms in the series in reverse order, 
                                  Sn = an + (an - d) + (an - 2d) + … + (a + d) + a ……….(2) 

4. ( )
b i b

k a i k a
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Adding (1) and (2) term by term, gives 
                               2 Sn = (a + an) + (a + an) + (a + an) + … + (a + an)       (n terms) 
                               2 Sn = n (a + an) 

⇒           Sn = n(a + an)/2  
                                  Sn = n(a + l)/2…………………..(3) 
Where                            l = an = a + (n - 1)d 
Therefore  
                                  Sn=  n/2 [a + a + (n - 1) d]  
                                  Sn  n/2 [2 a + (n - 1) d]……….(4) 
 
EXERCISE: 
Find the sum of first n natural numbers. 
 
SOLUTION: 
Let Sn = 1 + 2 + 3 + … + n 
Clearly the right hand side forms an arithmetic series with 
   
a = 1,   d = 2 - 1 = 1 and n = n 
 
 
 
 
 
 
 
 
 
 
 
EXERCISE: 
Find the sum of all two digit positive integers which are neither divisible by 5 nor by 2. 
 
SOLUTION: 
The series to be summed is: 
11 + 13 + 17 + 19 + 21 + 23 + 27 + 29 + … + 91 + 93 + 97 + 99 
which is not an arithmetic series. 
If we make group of four terms we get 
(11 + 13 + 17 + 19) + (21 + 23 + 27 + 29) + (31 + 33 + 37 + 39) + … + (91 + 93 + 97 + 
99)  = 60 + 100 + 140 + … + 380 
which now forms an arithmetic series in which 
                           a = 60; d = 100 - 60 = 40 and  l = an = 380 
To find n, we use the formula 
  an           = a + (n - 1) d 
 ⇒ 380        = 60 + (n - 1) (40) 
 ⇒  380 - 60 = (n - 1) (40) 
 ⇒  320   = (n - 1) (40) 
 
                                   
 
 

[ ]

[ ]
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2 ( 1)
2

2(1) ( 1)(1)
2

2 1
2

( 1)
2

n
nS a n d

n n

n n

n n

∴ = + −

= + −

= + −

+
=

320 1
40

n= −



20-Series                                                                                                                                                 VU                                     
 
 

 
© Copyright Virtual University of Pakistan 

156

            8 =  n - 1 
                                       ⇒    n = 9 
 
Now 
 
 
 
 
 
GEOMETRIC SERIES: 
The sum of the terms of a geometric sequence forms a geometric series (G.S.). For 
example 
  1 + 2 + 4 + 8 + 16 + … 
is geometric series. 
In general, if a is the first term and r the common ratio of a geometric series, then the 
series is given as: a + ar + ar2 + ar3 + … 
 
SUM OF n TERMS OF A GEOMETRIC SERIES: 
Let a be the first term and r be the common ratio of a geometric series. Then its nth term 
is: 
 an = arn-1; n ≥ 1 
 
If Sn denotes the sum of first n terms of the G.S. then 
 
 Sn = a + ar + ar2 + ar3 + … + arn-2 + arn-1……………(1) 
 
Multiplying both sides by r we get. 
 
r Sn = ar + ar2 + ar3 + … + arn-1 + arn………………(2) 
 
Subtracting (2) from (1) we get 
  Sn - rSn = a – arn 

 
                                ⇒   (1 - r) Sn = a (1 - rn) 
 
 
 
 
 
EXERCISE: 
Find the sum of the geometric series 
 
 
 
SOLUTION: 
In the given geometric series 
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INFINITE GEOMETRIC SERIES: 
Consider the infinite geometric series 
 a + ar + ar

2
 + … + ar

n-1
 + … 

then 
 
 
 
If Sn → S as n → ∞, then the series is convergent and S is its sum. 
If |r| < 1, then rn → 0 as n → ∞ 
 
 
 
 
 
 
If Sn increases indefinitely as n becomes very large then the series is said to be divergent. 
 
EXERCISE: 
Find the sum of the infinite geometric series: 
 
 
 
 
SOLUTION: 
Here we have 
 
 
 
Note that |r| < 1 So we can use the above formula. 
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EXERCISE: 
Find a common fraction for the recurring decimal 0.81 
 
SOLUTION: 
           0.81= 0.8181818181 … 
       = 0.81 + 0.0081 + 0.000081 + … 
which is an infinite geometric series with  
 
 
 
 
 
 
 
 
 
 
IMPORTANT SUMS: 
 
 
 
 
 
 
 
 
EXERCISE: 
Sum to n terms the series    1⋅5+5 ⋅11+9 ⋅17+… 
SOLUTION: 
  Let Tk denote the kth term of the given series. 
  
  Then Tk= [1+(k-1)4] [5+(k-1)6] 
      = (4k-3)(6k-1) 
      = 24k2 - 22k + 3 
 
Now            Sk = T1 + T2 + T3 + … + Tn 
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Lecture No.21   Recursion I 

Recursion 
First of all, instead of giving the definition of Recursion, we give you an example. You 
already know the Set of Odd numbers. Here we give the new definition of the same set 
that is the set of Odd numbers. 
 
Definition for odd positive integers may be given as: 
 
BASE: 
            1 is an odd positive integer. 
 
RECURSION: 
  If k is an odd positive integer, then k + 2 is an odd positive integer. 
Now, 1 is an odd positive integer by the definition base. 
With k = 1, 1 + 2 = 3, so 3 is an odd positive integer. 
With k = 3, 3 + 2 = 5, so 5 is an odd positive integer 
and so, 7, 9, 11, … are odd positive integers. 
 
REMARK: Recursive definitions can be used in a “generative” manner. 
 
RECURSION: 
The process of defining an object in terms of smaller versions of itself is called recursion. 
A recursive definition has two parts: 
 
1.BASE: 
 An initial simple definition which cannot be expressed in terms of  smaller 
versions of itself. 
 
2. RECURSION: 
          The part of definition which can be expressed in terms of  smaller versions 
of itself. 
 
RECURSIVELY DEFINED FUNCTIONS: 
A function is said to be recursively defined if the function refers to itself such that  
          1. There are certain arguments, called base values, for which  the function does not    
               refer to itself. 
          2. Each time the function does refer to itself, the argument of the function must be  
              closer to a base value. 
 
EXAMPLE: 
Suppose that f is defined recursively by 
   f(0) = 3 
  f(n + 1) = 2 f (n) + 3 
Find f(1), f(2), f(3) and f(4) 
SOLUTION: 
          From the recursive definition it follows that 



21- Recursion  VU                       
 
 

 
© Copyright Virtual University of Pakistan 

160

           f(1) = 2 f(0) + 3 = 2(3) + 3 = 6 + 3 = 9 
In evaluating of f(1) we use the formula given in the example and we note that it involves 
f(0) and we are also given the value of that which we use to find out the functional value 
at 1. Similarly we will use the preceding value  
In evaluating the next values of the functions as we did below.  
           f(2) = 2 f(1) + 3 = 2(9) + 3 = 18 + 3 = 21 
           f(3) = 2 f(2) + 3 = 2(21) + 3 = 42 + 3 = 45 
           f(4) = 2 f(3) + 3 = 2(45) + 3 = 90 + 3 = 93 
 
EXERCISE: 
Find f(2), f(3), and f(4) if f is defined recursively by           
  f(0) = -1, f(1)=2 and for n = 1, 2, 3, … 
  f(n+1) = f(n) + 3 f(n - 1)  
 
SOLUTION: 
          From the recursive definition it follows that 
  f(2)   = f(1) + 3 f (1-1) 
           = f(1) + 3 f (0) 
                    = 2 + 3 (-1)  
                   = -1 
Now in order to find out the other values we will need the values of the preceding .So we 
write these values here again 
           f(0) = -1, f(1)=2        f(n+1) = f(n) + 3 f(n - 1)  
           f(2) = -1 
By recursive formula we have 
                     f(3) = f(2) + 3 f (2-1) 
                           = f(2) + 3 f (1) 
                           = (-1) + 3 (2)  
                = 5 
                   f(4)  = f(3) + 3 f (3-1) 
                          = f(2) + 3 f (2) 
                          = 5 + 3 (-1)  
                          = 2 
 
THE FACTORIAL OF A POSITIVE INTEGER: 
For each positive integer n, the factorial of n denoted n! is defined to be the product of all 
the integers from 1 to n: 
  n! = n·(n - 1)·(n - 2) · · · 3 · 2 · 1 
Zero factorial is defined to be 1   
                           0! = 1 
EXAMPLE: 
 0! = 1    1! = 1 
 2! = 2·1 = 2   3! = 3·2·1 = 6 
 4! = 4·3·2·1 = 24  5! = 5·4·3·2·1 = 120 
 6! = 6·5·4·3·2·1= 720  7! = 7·6·5·4·3·2·1= 5040 
 
REMARK: 
  5! = 5 · 4 · 3 · 2 · 1 
       = 5 ·(4 · 3 · 2 · 1)  = 5 · 4! 
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In general,  
  n! = n(n-1)!  for each positive integer n. 
 
THE FACTORIAL FUNCTION DEFINED RECURSIVELY: 
We can define the factorial function F(n) = n! recursively by specifying the initial value 
of this function, namely, F(0) = 1, and giving a rule for finding F(n) from F(n-1).{(n! = 
n(n-1)!} 
Thus, the recursive definition of factorial function F(n) is: 
1.  F(0) = 1 
2.  F(n) = n F(n-1) 
 
EXERCISE: 
Let S be the function such that S(n) is the sum of the first n positive integers. Give a 
recursive definition of S(n). 
 
SOLUTION: 
The initial value of this function may be specified as S(0) = 0 
Since  
  S(n) = n + (n - 1) + (n - 2) + … + 3 + 2 + 1 
          = n + [(n - 1) + (n - 2) + … + 3 + 2 + 1] 
          = n + S(n-1) 
which defines the recursive step. 
Accordingly S may be defined as: 
1.  S(0)= 0   
2.  S(n) = n + S(n - 1)  for n ≥ 1 
 
EXERCISE: 
Let a and b denote positive integers. Suppose a function Q is defined recursively as 
follows: 
(a) Find the value of Q(2,3) and Q(14,3) 
(b) What does this function do? Find Q (3355, 7) 
 
SOLUTION: 
 
 
 
 
(a) Q (2,3) = 0  since 2 < 3 
            Given Q(a,b) = Q(a-b,b) + 1 if b ≤a 
Now  
 Q (14, 3) = Q (11,3) + 1 
   = [Q(8,3) + 1] + 1 = Q(8,3) + 2 
   = [Q(5,3) + 1] + 2 = Q(5,3) + 3 
   = [Q(2,3) + 1] + 3 = Q(2,3) + 4 
   = 0 + 4  (∴ Q(2,3) = 0) 
   = 4 
 
(b) 
 
 

0 if 
( , )

( , ) 1 if  
a b

Q a b
Q a b b b a

〈⎧
= ⎨ − + ≤⎩

0 if 
( , )

( , ) 1 if 
a b

Q a b
Q a b b b a

〈⎧
= ⎨ − + ≤⎩
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Each time b is subtracted from a, the value of Q is increased by 1. Hence Q(a,b) finds the 
integer quotient when a is divided by b. 
Thus Q(3355, 7) = 479 
 
THE FIBONACCI SEQUENCE: 
The Fibonacci sequence is defined as follows. 
F0 = 1, F1 = 1 
Fk = Fk-1 + Fk-2  for all integers k ≥ 2 
  
 
 
 
            F2 = F1 + F0 = 1 + 1 = 2 
 F3 = F2 + F1 = 2 + 1 = 3 
 F4 = F3 + F2 = 3 + 2 = 5 
 F5 = F4 + F3 = 5 + 3 = 8 
       . 
       . 
       . 
 
RECURRENCE RELATION: 
A recurrence relation for a sequence a0, a1, a2, . . . , is a formula that relates each term ak 
to certain of its predecessors ak-1, ak-2, . . . , ak-i ,  
where i is a fixed integer and k is any integer greater than or equal to i. The initial 
conditions for such a recurrence relation specify the values of  
a0, a1, a2, . . . , ai-1. 
 
EXERCISE: 
Find the first four terms of the following recursively defined sequence. 
 b1 = 2 
 bk = bk-1 + 2 · k,  for all integers k ≥ 2 
 
SOLUTION: 
 b1 = 2  (given in base step) 
 b2 = b1 + 2 · 2 = 2 + 4 = 6 
 b3 = b2 + 2 · 3 = 6 + 6 = 12 
 b4 = b3 + 2 · 4 = 12 + 8 = 20 
 
EXERCISE: 
Find the first five terms of the following recursively defined sequence. 
  t0 =  – 1, t1 = 1 
  tk = tk-1 + 2 · tk-2,  for all integers k ≥ 2 
SOLUTION: 
 t0 =  – 1,  (given in base step) 
  t1 = 1  (given in base step) 
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 t2 = t1 + 2 · t0 =   1 + 2 · (–1) = 1 – 2    = –1 
 t3 = t2 + 2 · t1 = –1 + 2 · 1      = –1 + 2 = 1 
 t4 = t3 + 2 · t2 =   1 + 2 · (–1) = 1 – 2    = –1  
 
EXERCISE: 
Define a sequence b0, b1, b2, . . . by the formula  

  bn = 5
 n ,    for all integers n ≥ 0.  

Show that this sequence satisfies the recurrence relation bk = 5bk – 1, for all integers  
k ≥ 1. 
 
SOLUTION: 
The sequence is given by the formula 
   bn = 5

 n
 

Substituting k for n we get 
   bk = 5

k
 . . . . . (1) 

Substituting k – 1 for n we get 
   bk-1 = 5

 k-1
 . . . . . (2) 

Multiplying both sides of (2) by 5 we obtain 
  5 · bk-1 = 5 · 5

k – 1  

                = 5
k
  =  bk   using (1) 

Hence  bk = 5bk-1  as required 
 
EXERCISE: 
Show that the sequence 0, 1, 3, 7, . . . , 2

 n – 1, . . . , for n ≥ 0, satisfies the recurrence 
relation 
  dk = 3dk-1 – 2dk-2, for all integers k ≥ 2 
 
SOLUTION: 
The sequence is given by the formula 
   dn = 2

 n
 – 1  for n ≥ 0 

Substituting k – 1 for n we get   dk-1 = 2
k-1 – 1 

Substituting k – 2 for n we get  dk-2 = 2
k-2

 – 1 
We want to prove that  
  dk = 3dk-1 – 2dk-2 

                 R.H.S. = 3(2
k – 1 – 1) – 2(2

k – 2 – 1) 
       = 3 · 2

k – 1 – 3 – 2 · 2
k – 2 + 2 

       = 3 · 2
k – 1 – 2

k – 1 – 1 
       = (3 – 1) · 2

k – 1 – 1 
       = 2 · 2

k – 1 – 1 =  2
k  – 1 = dk     = L.H.S. 
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THE TOWER OF HANOI: 
The puzzle was invented by a French Mathematician Adouard Lucas in 1883. It is well 
known to students of Computer Science since it appears in virtually any introductory text 
on data structures or algorithms. 
There are three poles on first of which are stacked a number of disks that decrease in size 
as they rise from the base. The goal is to transfer all the disks one by one from the first 
pole to one of the others, but they must never place a larger disk on top of a smaller one. 
Let mn be the minimum number of moves needed to move a tower of n disks from one 
pole to another. Then mn can be obtained recursively as follows. 

• m1 = 1 
• mk = 2 mk-1 + 1 

m2 = 2 · m1 + 1 = 2 · 1 + 1 = 3  
m3 = 2 · m2 + 1 = 2 · 3 + 1 = 7  
m4 = 2 · m3 + 1 = 2 · 7 + 1 = 15  
m5 = 2 · m4 + 1 = 2 · 15 + 1 = 31  
m6 = 2 · m5 + 1 = 2 · 31 + 1 = 65 
 Note that 
             mn = 2

n
 – 1 

  m64 = 2
64

 – 1 
         = 18446744073709551615 moves 
                    = 1.844 x 10 19  Moves 
 
USE OF RECURSION: 
At first recursion may seem hard or impossible, may be magical at best.  However, 
recursion often provides elegant, short algorithmic solutions to many problems in 
computer science and mathematics. 
Examples where recursion is often used  

• math functions  
• number sequences  
• data structure definitions  
• data structure manipulations  
• language definitions  
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Lecture No.22   Recursion II 

Recursion 

 
             A recursive definition (i.e to build the new set elements from  the previous one,s) 

for a set consists of the following three rules: 
                  
 I.         BASE: A statement that certain objects belong to the set. 
                       II.        RECURSION: A collection of rules indicating how to form new       
                                                          set objects from those  already known to be in the set. 
 III.      RESTRICTION: A statement that no objects belong to the set    
                                                                 other than those coming from I and II. 
 
EXERCISE: 

Let S be a set defined recursively by 
          I.         BASE: 5 ∈ S. 
          II.        RECURSION: If x ∈ S and y ∈ S, then x + y ∈ S. 
          III.      RESTRICTION: S contains no elements other than those obtained   
from rules I and II. 
 
         Show that S is the subset of all positive integers divisible by 5. 

             
 SOLUTION: 

Let A be the set of all positive integers divisible by 5. Then     
    A = {5n | n ∈ N}.           
      We need to prove that S ⊆ A.                      
      5 is divisible by 5 since 5    = 5 × 1            
                                  ⇒ 5 ∈ A  
     
       Now consider x ∈ A and y ∈ A, we show that x + y ∈ A       
  x ∈A⇒ 5 | x so that x = 5 ⋅ p  for some p ∈N         
             y ∈A⇒ 5 | y so that y = 5 ⋅ q  for some q ∈N 
      
      Hence x + y = 5 ⋅ p + 5 ⋅ q = 5 ⋅ (p + q) 
  ⇒ 5 | (x + y) and so (x + y) ∈ A 
      
      Thus, S is a subset of A. 

 
  RECURSIVE DEFINITION OF BOOLEAN EXPRESSIONS 
   
                    I. BASE:  
  Each symbol of the alphabet is a Boolean expression. 
  
                   II. RECURSION: 

  If P and Q are Boolean Expressions, then so are 
  (a)   (P ∧ Q) 
 (b)   (P ∨ Q) and  
 (c)   ~ P. 
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                   III RESTRICTION:  

                       There are no Boolean expressions over the alphabet  
  other than those obtained from I and II. 

 
EXERCISE 

Show that the following is a Boolean expression over the English alphabet. 
   ((p ∨ q) ∨ ~ ((p ∧ ~ s) ∧ r)) 

SOLUTION: 
  We will show that the given Boolean expression can be found out 
using the recursive definition of Boolean expressions. So first of all we will start 
with the symbols  which are involved in the Boolean expressions.  
                 (1)   p, q, r, and s are Boolean expressions by I. 
        
Now we start with the inner most expression which is p ∧ ~ s before we check this 
one we will check ~s and we note that 
                 (2)   ~ s is a Boolean expressions by (1) and II(c). 
 
Now from above we have p and ~s are Boolean expressions and we can say that  
                 (3)   (p ∧ ~ s) is a Boolean expressions by (1), (2) and II(a). 
 
Similarly we find that 
                 (4)   (p ∧ ~ s) ∧ r) is a Boolean expressions by (1), (3) and II(a). 
                 (5)   ~ (p ∧ ~ s) ∧ r) is a Boolean expressions by (4) and II(c). 
                 (6)   (p ∨ q) is a Boolean expressions by (1) and II(b). 
                 (7)   ((p ∨ q) ∨ ~ ((p ∧ ~ s) ∧ r)) is a Boolean expressions by (5), (6)  
                         and II(b). 
 

RECURSIVE DEFINITION OF THE SET OF STRINGS OVER AN ALPHABET 
Consider a finite alphabet Σ = {a, b}. The set of all finite strings over Σ, 
denoted Σ*, is                 defined  recursively as follows: 

 
          I.          BASE: ε is in Σ*, where ε is the null string. 
 
         II.        RECURSION: If s ∈ Σ*, then 

(a)   sa ∈ Σ* and 
(b)   sb ∈ Σ*, 

         where sa and sb are concatenations of s with a and b respectively. 
  
        III.  RESTRICTION: Nothing is in Σ* other than objects defined in I and II 
above. 

 
EXERCISE: 

Give derivations showing that abb is in Σ*. 
  

SOLUTION 
 
   (1)   ε ∈ Σ* by I. 
   (2)   a = εa ∈ Σ* by (1) and II(a). 
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   (3)   ab ∈ Σ* by (2) and II(b). 
   (4)   abb ∈ Σ* by (3) and II(b). 

 
EXERCISE: 

Give a recursive definition of all strings of 0’s and 1’s for which all the 
         0’s precede all the 1’s. 
         

SOLUTION: 
         Let S be the set of all strings of 0’s and 1’s for which all the 0’s precede all 
the 1’s. The following is a recursive definition of S.  
                 I.        BASE: The null string ε ∈ S. 
                II.        RECURSION: If s ∈ S, then 

          (a)   0s ∈ S and  (b)   s1 ∈ S. 
                III       RESTRICTION: Nothing is in S other than objects defined in I and II   
                            above. 
 
PARENTHESIS STRUCTURE 

Let P be the set of grammatical configurations of parentheses. The following 
is a recursive definition of P. 
I.          BASE: ( ) is in P. 
II.        RECURSION:  

(a)   If E is in P, so is (E). 
(b)   If E and F are in P, so is EF. 

III. RESTRICTION: No configurations of parentheses are in P other than 
those  

derived from I  and II above. 
 
EXERCISE: 

Derive the fact that ( ( ( ) ) ( ) ) is in the set P of grammatical configuration of 
parentheses. 

SOLUTION: 
  Now we will show that the given structure of parenthesis can be 
obtained by using the recursive definition of Parenthesis Structure for this we will 
start with the inner most bracket  and note that 
           1.( ) is in P, by I 
Since in the recursive step (a) we say that parenthesis can be put into another  
parenthesis which shows that 
            2. ( (  ) ) is in P, by 1 and II(a) 
Similarly you can see that 
            3. ( (  ) ) ( ) is in P, by 2, I and II(b) 
            4. ( ( (  ) ) ( ) ) is in P, by 3, and II(a) 

 
SET OF ARITHMETIC EXPRESSIONS 

The set of arithmetic expressions over the real numbers can be defined recursively 
as follows.  
I.           BASE: Each real number r is an arithmetic expression. 
II.        RECURSION: If u and v are arithmetic expressions, then the 
  following are also arithmetic expressions. 

a.  (+ u) b. ( − u) c. (u + v) 
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d. (u − v) e. (u ⋅ v)          f.  u
v

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

             III.      RESTRICTION: There are no arithmetic expressions other than those  
                         obtained from I and II above 
 
EXERCISE 
 
Give derivations showing that the following is an arithmetic expression. 

(9 (6.1 2))
((4 7 ) 6)

⎛ ⎞⋅ +
⎜ ⎟− ⋅⎝ ⎠

 

SOLUTION: Here again our approach is same that we will trace the given expression 
and see that it can be obtained by using Recursive definition of Arithmetic Operations or  
not. 

(1)   9, 6.1, 2, 4, 7, and 6 are arithmetic expressions by I. 
(2)   (6.1 + 2) is an arithmetic expression by (1) and II(c). 
(3)   (9⋅(6.1 +2)) is an arithmetic expression by (1), (2) and II(e). 
(4)   (4 – 7) is an arithmetic expression by (1) and II(d). 
(5)   ((4 – 7)⋅6) is an arithmetic expression by (1), (4) and II(e). 

            (6) 

                 (9 (6.1 2))
((4 7 ) 6)

⎛ ⎞⋅ +
⎜ ⎟− ⋅⎝ ⎠

 is an arithmetic expression by (3), (5) and II(f). 

 
 
RECURSIVE DEFINITION OF SUM 

Given numbers a1, a2, . . . ,an, where n is a positive integer, the  
 

summation from i = 1 to n of the ai, denoted  ∑ =

n

i ia
1 , is defined as 

follows: 
 

RECURSIVE DEFINITION OF UNION OF SETS 
 

Given sets A1, A2, . . . ,An, where n is a positive integer, the union  
 
of Ai from i = 1 to n,  denoted   

                                                  1

n
ii

A
=∪

 is defined by 

           

( )

1
11

1

1 1

:

 

RECURSION:

    .

ii

n n
i i ni i

BASE

A A

A A A

=

−

= =

=

= ∪

∪

∪ ∪
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RECURSIVE DEFINITION OF INTERSECTION OF SETS 
Given sets A1, A2, . . . ,An, where n is a positive integer, the  
 

intersection of Ai from i = 1 to n,  denoted  ∩n

i iA
1

,
=  is defined by      

                                                                      
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

( )

1
11

1

1 1

:

  

RECURSION:

  .

ii

n n
i i ni i

BASE

A A

A A A

=

−

= =

=

= ∩

∩

∩ ∩
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Lecture No.23   Mathematical Induction 
 

 
PRINCIPLE OF MATHEMATICAL INDUCTION: 
Let P(n) be a propositional function defined for all positive integers n. P(n) is true for 
every positive integer n if 
 
1.Basis Step:  
          The proposition P(1) is true. 
 
2.Inductive Step:  
          If P(k) is true then P(k + 1) is true for all integers k ≥ 1. 
  i.e. ∀ k  p(k) → P(k + 1) 
EXAMPLE: 
         Use Mathematical Induction to prove that 
  
                                                      for all integers n ≥1 
 
SOLUTION: 
                      Let 
 
1.Basis Step: 

                 P(1) is true. 
For n = 1, left hand side of P(1) is the sum of all the successive integers starting at 1 and 
ending at 1, so LHS = 1 and RHS  is  
 
                                                           
 
so the proposition is true for n = 1. 
        
2. Inductive Step:  Suppose P(k) is true for, some integers k ≥ 1. 
 
 
(1) 
 
 
To prove P(k + 1) is true. That is, 
 
          (2) 
 
Consider L.H.S. of (2) 
 
 
 
 
 
 
 

( 1)1 2 3
2

n nn +
+ + + + ="

( 1)( ) :1 2 3
2

n nP n n +
+ + + + ="

1(1 1) 2. . 1
2 2

R H S +
= = =

( 1)1 2 3
2

k kk +
+ + + + ="

( 1)( 2)1 2 3 ( 1)
2

k kk + +
+ + + + + ="

1 2 3 ( 1) 1 2 3 ( 1)
( 1) ( 1) using (1)

2

( 1) 1
2

k k k
k k k

kk

+ + + + + = + + + + + +
+

= + +

⎡ ⎤= + +⎢ ⎥⎣ ⎦

" "
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2( 1)
2

( 1)( 2) RHS of (2)
2

kk

k k

+⎡ ⎤= + ⎢ ⎥⎣ ⎦
+ +

= =

 

 
 
Hence by principle of Mathematical Induction the given result true for all integers greater 
or equal to 1. 
 
EXERCISE: 
                      Use mathematical induction to prove that 
                      1+3+5+…+(2n -1) = n2 for all integers n ≥1. 
 
SOLUTION: 
                      Let P(n) be the equation 1+3+5+…+(2n -1) = n2 
 

1. Basis Step:    
                         P(1) is true 

                               For n = 1, L.H.S of P(1) = 1and  
                                                R.H.S = 12 = 1 
                               Hence the equation is true for n = 1 
       
      2.  Inductive Step:   
                                Suppose P(k) is true for some integer k ≥ 1. That is, 
  1 + 3 + 5 + … + (2k - 1) = k2 …………………(1) 
 
       To prove P(k+1) is true; i.e., 
         1 + 3 + 5 + … +[2(k+1)-1] = (k+1) 2    ………….……(2) 
 
       Consider L.H.S. of (2) 
 
 
 
 
 
 
 
Thus P(k+1) is also true. Hence by mathematical induction, the given 
equation is true for all integers n ≥ 1. 
 
EXERCISE: 
                     Use mathematical induction to prove that  
                     1+2+22 + … + 2n = 2n+1 - 1 for all integers n ≥0 
 
SOLUTION: 
                      Let P(n): 1 + 2 + 22 + … + 2n = 2n+1 - 1 
 

1. Basis Step:   
                         P(0) is true. 

2

2

1 3 5 [2( 1) 1] 1 3 5 (2 1)
1 3 5 (2 1) (2 1)

(2 1) using (1)
( 1)
R.H.S. of (2)

k k
k k

k k
k

+ + + + + − = + + + + +
= + + + + − + +

= + +

= +
=

" "
"
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                               For n = 0 
                               L.H.S of P(0) = 1 
                               R.H.S of P(0) = 20+1 - 1 = 2 - 1 = 1 
                               Hence P(0) is true. 
 

 
2. Inductive Step:  
                                Suppose P(k) is true for some integer k ≥ 0; i.e., 

 1+2+22+…+2k = 2k+1 – 1……………………(1) 
To prove P(k+1) is true, i.e., 
   1+2+22+…+2k+1 = 2k+1+1 – 1…………………(2) 
 
Consider LHS of equation (2) 
    1+2+22+…+2k+1 = (1+2+22+…+2k) + 2k+1 
                     = (2k+1 - 1) +2k+1 
                                = 2·2k+1 - 1 
          = 2k+1+1 - 1  = R.H.S of (2) 
Hence P(k+1) is true and consequently by mathematical induction the given propositional 
function is true for all integers n ≥ 0. 
 
EXERCISE: 
                     Prove by mathematical induction 
                                              
 
                                      for all integers n ≥1. 
SOLUTION: 
                       Let P(n) denotes the given equation 
 

1. Basis step:   
                         P(1) is true 

                               For n = 1 
                               L.H.S of P(1) = 12 = 1                              
 
           R.H.S of P(1) 
 
 
 
  
So L.H.S = R.H.S of P(1).Hence P(1) is true 
 
2.Inductive Step:   
                            Suppose P(k) is true for some integer k ≥1;  
 
                                                                                                 ………(1) 
 
To prove P(k+1) is true; i.e.; 
 
                                                                                                             …(2) 
              

2 2 2 2 ( 1)(2 1)1 2 3
6

n n nn + +
+ + + + ="

2 2 2 2 ( 1)(2 1)1 2 3
6

k k kk + +
+ + + + ="

2 2 2 2 ( 1)( 1 1)(2( 1) 1)1 2 3 ( 1)
6

k k kk + + + + +
+ + + + + ="

1(1 1)(2(1) 1)
6

(1)(2)(3) 6 1
6 6

+ +
=

= = =
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Consider LHS of above equation (2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXERCISE: 
                     Prove by mathematical induction 
 
                                                                                           for all integers n≥1 
 
              
SOLUTION: 
                       Let P(n) be the given equation. 
 
            1. Basis Step:   

                        P(1) is true 
                              For n = 1 
                              L.H.S of P(1) =  
 
                              R.H.S of P(1) = 
 
                             Hence P(1) is true 
       
          2. Inductive Step:   
                              Suppose P(k) is true, for some integer k≥1. That is 
 
                                                        …………….(1) 
 
  
 To prove P(k+1) is true. That is 
 
 
                                                                                                 ……..(2) 
 

1 1 1
1 2 2 3 ( 1) 1

n
n n n

+ + + =
⋅ ⋅ + +

"

1 1 1
1 2 1 2 2

= =
⋅ ×
1 1

1 1 2
=

+

1 1 1
1 2 2 3 ( 1) 1

k
k k k

+ + + =
⋅ ⋅ + +

"

1 1 1 1
1 2 2 3 ( 1)( 1 1) ( 1) 1

k
k k k

+
+ + + =

⋅ ⋅ + + + + +
"

2 2 2 2 2 2 2 2 2

2

2

2

1 2 3 ( 1) 1 2 3 ( 1)
( 1)(2 1) ( 1)

6
(2 1)( 1) ( 1)

6
(2 1) 6( 1)( 1)

6

2 6 6( 1)
6

( 1)(2 7 6)
6

( 1)( 2)(2 3)
6

( 1)( 1 1)(2( 1) 1)
6

k k k
k k k k

k kk k

k k kk

k k kk

k k k

k k k

k k k

+ + + + + = + + + + + +
+ +

= + +

+⎡ ⎤= + + +⎢ ⎥⎣ ⎦
+ + +⎡ ⎤= + ⎢ ⎥⎣ ⎦

⎡ ⎤+ + +
= + ⎢ ⎥

⎣ ⎦
+ + +

=

+ + +
=

+ + + + +
=

" "
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Now we will consider the L.H.S of the equation (2) and will try to get the R.H.S by using 
equation (1) and some simple computation. 
 
Consider LHS of (2) 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 
Hence P(k+1) is also true and so by Mathematical induction the given equation is true for 
all integers n ≥1. 
 
EXERCISE: 
                     Use mathematical induction to prove that 
 
                                                      
 
SOLUTION: 
 
1.Basis Step:   

                 To prove the formula for n = 0, we need to show that 
 
  
                              Now, L.H.S =  
                                        R.H.S = 0·22 + 2 = 0 + 2 = 2 
                              Hence the formula is true for n = 0 
 
2.Inductive Step:  

                       Suppose for some integer n = k ≥0 
 
 ………………(1) 
 
 
We must show that 
                            ………..(2) 

1 1 1
1 2 2 3 ( 1)( 2)

1 1 1 1
1 2 2 3 ( 1) ( 1)( 2)

1
1 ( 1)( 2)

k k

k k k k
k

k k k

+ + +
⋅ ⋅ + +

= + + + +
⋅ ⋅ + + +

= +
+ + +

"

"

2

2

( 2) 1
( 1)( 2)

2 1
( 1)( 2)

( 1)
( 1)( 2)

1
( 2)
RHS of (2)

k k
k k
k k
k k

k
k k
k
k

+ +
=

+ +

+ +
=

+ +

+
=

+ +
+

=
+

=

1 2
1

2 2 2, for all integers 0n i n
i

i n n+ +
=

= ⋅ + ≥∑

0 1 0 2
1

.2 0 2 2i
i

i+ +
=

= ⋅ +∑
1 1

1
2 (1)2 2i

i
i

=
⋅ = =∑

1 2
1

2 2 2k i k
i

i k+ +
=

⋅ = ⋅ +∑
2 1 2

1
2 ( 1) 2 2

ik k
i

i k+ + +
=

⋅ = + ⋅ +∑
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Consider LHS of (2) 
 
 
 
 
 
 
 
 
 
 
 
Hence the inductive step is proved as well. Accordingly by mathematical induction the 
given formula is true for all integers n≥0. 
 
 
 
EXERCISE: 
                     Use mathematical induction to prove that  
                                                     
                                                                                 for all integers n ≥2 
 
 
SOLUTION: 
 

1. Basis Step:   
                        For n = 2 

 
                              L.H.S  
 
                             R.H.S 
 
Hence the given formula is true for n = 2 
 

2. Inductive Step:   
                               Suppose for some integer k ≥2 

 
                                                                                                ………………….(1) 
 
                                    We must show that 
 
                                                                                                     …………..(2) 
 
 
 
 
 
 

2 1 2
1 1

2 2

2

2

2

1 2

2 2 ( 2) 2

( 2 2) ( 2) 2
( 2)2 2
(2 2) 2 2
( 1)2 2 2
( 1) 2 2
RHS of equation (2)

i ik k k
i i

k k

k

k

k

k

i i k

k k
k k

k
k
k

+ + +
= =

+ +

+

+

+

+ +

⋅ = ⋅ + + ⋅

= ⋅ + + + ⋅

= + + +

= + ⋅ +

= + ⋅ +

= + ⋅ +
=

∑ ∑

2 2 2

1 1 1 11 1 1
2 3 2

n
n n

+⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ⋅ − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

"

2

1 1 31 1
2 4 4

= − = − =

2 1 3
2(2) 4

+
= =

2 2 2

1 1 1 11 1 1
2 3 2

k
k k

+⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ⋅ − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

"

2 2 2

1 1 1 ( 1) 11 1 1
2 3 ( 1) 2( 1)

k
k k

⎛ ⎞ + +⎛ ⎞ ⎛ ⎞− ⋅ − − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
"
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Consider L.H.S of (2) 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
Hence by mathematical induction the given equation is true 
 
EXERCISE: 
                   Prove by mathematical induction 
 
                                                         for all integers n≥1 
 
SOLUTION: 
        1.  Basis step:   

                       For n = 1 
       L.H.S   
                         
                             R.H.,S = (1+1)! - 1 = 2! - 1 
                                      = 2 -1 = 1 
                             Hence 
  
 
                            which proves the basis step. 
 
2.Inductive Step:   
                            Suppose for any integer k ≥1 
 
                                                                            ………………………..(1) 
We need to prove that 
                                                                            
                                                                                         ……………………(2) 
                                                                                       
 

2 2 2

2 2 2 2

2

2

2

2

1 1 11 1 1
2 3 ( 1)

1 1 1 11 1 1 1
2 3 ( 1)

1 11
2 ( 1)

1 ( 1) 1
2 ( 1)

1 2 1 1
2 ( 1)

k

k k

k
k k

k k
k k

k k
k k

⎛ ⎞⎛ ⎞ ⎛ ⎞− ⋅ − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − ⋅ − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠

⎛ ⎞+⎛ ⎞= −⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
⎛ ⎞+ + −⎛ ⎞= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

⎛ ⎞+ + −⎛ ⎞= ⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

"

"

2 2 ( 2)
2 ( 1) 2 ( 1)

1 1 RHS of (2)
2( 1)

k k k k
k k k k

k
k

+ +
= =

+ +
+ +

= =
+

1
( !) ( 1)! 1n

i
i i n

=
= + −∑

1
( !) (1)(1!) 1n

i
i i

=
= = =∑

1

1
( !) (1 1)! 1

i
i i

=
= + −∑

1
( !) ( 1)! 1k

i
i i k

=
= + −∑

1

1
( !) ( 1 1)! 1k

i
i i k+

=
= + + −∑
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Consider LHS of (2) 
 
                                                                                                        Using (1) 
 
 
 
 
 
 
 
 
 
Hence the inductive step is also true. 
Accordingly, by mathematical induction, the given formula is true for all integers n ≥1. 
 
EXERCISE: 
                     Use mathematical induction to prove the generalization of the following 
DeMorgan’s Law: 
 
 
 
where A1, A2, …, An are subsets of a universal set U and n≥2. 
 
SOLUTION: 
  Let P(n) be the given propositional function 
                         Here A  represents complement of A. 
1.Basis Step:   

               P(2) is true. 
  
         L.H.S of P(2) =                                             By DeMorgan’s Law 
 
  
 
 
2.Inductive Step:  

                 Assume that P(k) is true for some integer k ≥2; i.e., 
 
                                                  
                                                                                    ………………….(1) 
 
where A1, A2, …, Ak are subsets of the universal set U. If Ak+1 is another set of U, then we 
need to show that 
 
 
                                                                        ………………..(2) 
 
 
 
 

1

1 1
( !) ( !) ( 1)( 1)!

( 1)! 1 ( 1)( 1)!
( 1)! ( 1)( 1)! 1
[1 ( 1)]( 1)! 1
( 2)( 1)! 1
( 2)! 1
RHS of (2)

k k

i i
i i i i k k

k k k
k k k

k k
k k
k

+

= =
= + + +

= + − + + +
= + + + + −
= + + + −
= + + −
= + −
=

∑ ∑

1 1

n n
j jj j

A A
= =

=∩ ∪

2
1 21

1 2

2

1
RHS of (2)

jj

ji

A A A

A A

A P

=

=

=

=

= =

∩ ∩
∪
∪

1 1

k k
j jj j

A A
= =

=∩ ∪

1 1

1 1

k k
j jj j

A A+ +

= =
=∩ ∪



23-Mathematical induction     VU                       
 
 

 
© Copyright Virtual University of Pakistan 

178

Consider L.H.S of (2) 
 
  
 
 
                                                                     By DeMorgan’s Law 
 
 
 
 
 
 
Hence by mathematical induction, the given generalization of DeMorgan’s Law holds. 
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Lecture No.24   Mathematical Induction for Divisibility 
 

MATHEMATICAL INDUCTION FOR 
DIVISIBILITY PROBLEMS 
INEQUALITY PROBLEMS 
 
DIVISIBILITY: 

               Let n and d be integers and d ≠ 0. Then n is divisible by d or d divides n              
written as  d | n. iff n = d·k for some integer k. 
Alternatively, we say that 
                                     n is a multiple of d  
                                     d is a divisor of n  
                                     d is a factor of n  
 Thus d|n ⇔ ∃ an integer k such that n = d·k 
 
EXERCISE: 
                     Use mathematical induction to prove that n3 - n is divisible by 3 whenever n 
is a positive integer. 
 
SOLUTION: 
 
1. Basis Step: 
            For n = 1 
       n3 - n = 13 - 1 = 1 - 1 = 0 
                      which is clearly divisible by 3, since 0 = 0·3 
                      Therefore, the given statement is true for n = 1. 
 
2. Inductive Step:   

                      Suppose that the statement is true for n = k, i.e., k3-k is divisible by 3 
for all n ∈Z+ 
Then  
  k3-k = 3·q…………………….(1) 
                                           for some q ∈Z 
We need to prove that (k+1)3 - (k+1) is divisible by 3.  
Now 
(k+1) 3 - (k+1) = (k3 + 3k2 + 3k + 1) - (k + 1) 
  = k3 + 3k2 + 2k 
  = (k3-k) + 3k2 + 2k + k 
  = (k3 - k) + 3k2 + 3k  
  = 3·q + 3·(k2 + k)  using(1) 
  = 3[q+k2 + k] 
⇒  (k+1)3 - (k+1) is divisible by 3. 
Hence by mathematical induction n3- n is divisible by 3, whenever n is a positive integer. 
 
EXAMPLE: 
                     Use mathematical induction to prove that for all integers n≥1, 
 22n-1 is divisible by 3. 
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SOLUTION: 
  Let P(n): 22n -1 is divisible by 3. 
 
1. Basis Step:  

                P(1) is true 
           Now P(1): 22(1)- 1 is divisible by 3. 
           Since 22(1)- 1= 4 - 1 = 3 
which is divisible by 3. 
Hence P(1) is true. 
 
2. Inductive Step:  

    Suppose that P(k) is true. That is 22k-1 is divisible by 3. Then, there 
exists an integer q such that 
      22k - 1 = 3·q …………………………(1) 
To prove P(k+1) is true, that is 22(k+1)- 1 is divisible by 3. 
Now consider 
      22(k+1) - 1= 22k+2 - 1 
         = 22k 22 - 1 
         = 22k4 - 1 
         = 22k(3+1) - 1 
         =  22k·3+(22k - 1) 
         =  22k·3+3·q           [by using (1) ] 
         =3(22k + q) 
⇒ 22(k+1) - 1 is divisible by 3. 
Accordingly, by mathematical induction. 22n- 1 is divisible by 3, for all integers n ≥ 1. 
 
EXERCISE: 
                     Use mathematical induction to show that the product of any two consecutive 
positive integers is divisible by 2. 
 
SOLUTION: 
           Let n and n + 1 be two consecutive integers. We need to prove that n(n+1) 
is divisible by 2. 
 
1.  Basis Step:  
  For n = 1 
  n (n+1) = 1·(1+1) = 1·2 = 2 
which is clearly divisible by 2. 
 
2.  Inductive Step:   

      Suppose the given statement is true for n = k. That is 
k (k+1) is divisible by 2, for some k ∈ Z+ 
Then  k (k+1) = 2·q                      ………………….(1) q ∈ Z+ 
We must show that 
  (k+1)(k+1+1) is divisible by 2. 
Consider  (k+1)(k+1+1) = (k+1)(k+2) 
    = (k+1)k + (k+1)2 

= 2q + 2 (k+1)  using (1)               
= 2(q+k+1) 

Hence (k+1) (k+1+1) is also divisible by 2. 
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Accordingly, by mathematical induction, the product of any two consecutive positive 
integers is divisible by 2 
 
EXERCISE: 
                     Prove by mathematical induction n3  - n is divisible by 6, for each integer 
n ≥ 2. 
 
SOLUTION: 
1.Basis Step: 
          For n = 2 
          n3 - n = 23- 2 = 8 - 2 = 6 
          which is clearly divisible by 6, since 6 = 1·6 
          Therefore, the given statement is true for n = 2. 
 
2.Inductive Step:   
                            Suppose that the statement is true for n = k, i.e., k3 - k is divisible by 6, 
for  all integers k ≥ 2. 
Then  
  k3 - k = 6·q……………(1)  for some q ∈ Z. 
We need to prove that  
 (k+1) 3- (k+1) is divisible by 6 
Now     (k+1) 3- (k+1) = (k3 + 3k3 + 3k + 1)-(k+1) 
   = k3 + 3k3 + 2k 
   = (k3 - k) + (3k3 + 2k + k) 
   = (k3 - k) + 3k3 + 3k  Using (1) 
   = 6·q + 3k (k+1)………………..(2)  
Since k is an integer, so k(k+1) being the product of two consecutive integers is an even 
number. 
 Let k(k+1) = 2r  r ∈ Z 
Now equation (2) can be rewritten as: 
 (k+1) 3 - (k+1) = 6·q + 3·2 r 
   = 6q + 6r 
   = 6 (q+r)  q, r ∈ Z 
⇒ (k+1) 3 - (k+1) is divisible by 6. 
Hence, by mathematical induction, n3 - n is divisible by 6, for each integer n ≥ 2. 
 
EXERCISE: 
                     Prove by mathematical induction. For any integer n ≥ 1, xn - yn is divisible 
by x - y, where x and y are any two integers with x ≠ y. 
 
SOLUTION: 
1. Basis Step:  
          For n = 1 
          xn - yn = x1– y1 = x - y 
                     which is clearly divisible by x – y. So, the statement is true for n = 1. 
 
2. Inductive Step:   
                    Suppose the statement is true for n = k, i.e., 
 xk - yk is divisible by x – y……………………(1) 
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We need to prove that xk+1- yk+1is divisible by x - y 
Now  
         xk+1- y k+1 = xk·x - yk·y 
   = xk·x - x·yk + x·yk - yk·y    (introducing x.yk) 
   = (xk - yk)·x + yk·(x-y) 
The first term on R.H.S=(xk - yk) is divisible by x - y by inductive hypothesis (1).  
The second term contains a factor (x-y) so is also divisible by x - y. 
Thus x k+1- y k+1 is divisible by x - y. Hence, by mathematical induction xn - yn is divisible 
by x - y for any integer n ≥1. 
 
 
PROVING AN INEQUALITY: 
Use mathematical induction to prove that for all integers n ≥ 3. 
  2n + 1 < 2n 
 
SOLUTION: 
1. Basis Step:  
          For n = 3 
                     L.H.S= 2(3) + 1 = 6 + 1 = 7 
                     R.H.S = 23 = 8 
Since 7 < 8, so the statement is true for n = 3. 
 
2. Inductive Step:   

                       Suppose the statement is true for n =k, i.e., 
                  2k + 1 < 2k…………………(1) k ≥ 3 
We need to show that the statement is true for n = k+1,  
i.e.; 
 2(k+1) + 1 < 2 k+1…………..(2) 
Consider L.H.S of (2)  
                                    = 2 (k+1) + 1 
   = 2k + 2 + 1 
   = (2k + 1) + 2 
   < 2 k + 2  using (1) 
   < 2k  + 2k   (since 2 <2 k   for k ≥ 3) 
   < 2·2k  = 2k+1 
Thus       2(k+1)+1 < 2k+1   (proved) 
 
EXERCISE: 
                      Show by mathematical induction 
 1 + n x ≤ (1+x)n  
for all real numbers x > - 1 and integers n ≥ 2 
 
SOLUTION: 
 
1.  Basis Step: 
            For n = 2 
                       L.H.S = 1 + (2) x= 1 + 2x 
                       RHS  = (1 + x)2  = 1 + 2x + x 2  > 1 + 2x  (x 2 > 0) 
          ⇒ statement is true for n = 2. 
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2. Inductive Step:   

                 Suppose the statement is true for n = k.  
 That is,  for k ≥ 2, 1 + k x ≤ (1 + x)k………………..(1) 
We want to show that the statement is also true for n = k + 1 i.e., 
 1 + (k + 1)x ≤ (1 + x) k+1  
Since x > - 1, therefore 1 + x > 0. 
Multiplying both sides of (1) by (1+x) we get 
 
(1+x)(1+x)k  ≥ (1 + x) (1 + kx) 
         = 1 + kx + x + kx2 
         = 1 + (k + 1) x + kx2 
but 
        
so 
  
        (1+x)(1+x)k ≥ 1 + (k + 1) x 
 
Thus 1 + (k+1) x ≤ (1+x) k+1. Hence by mathematical induction, the inequality is true. 
 
PROVING A PROPERTY OF A SEQUENCE: 
Define a sequence a1, a2,a3, … as follows: 
 a1 = 2 
 ak = 5ak-1 for all integers k ≥ 2     …………….(1) 
Use mathematical induction to show that the terms of the sequence satisfy the formula. 
 an = 2·5n-1 for all integers n ≥ 1 
 
SOLUTION: 
1.Basis Step: 

          For n = 1, the formula gives 
          a1 = 2·51-1 = 2·50 = 2·1 = 2 
which confirms the definition of the sequence. Hence, the formula is true for n = 1. 
 
2.Inductive Step:   

               Suppose, that the formula is true for n = k, i.e.,  
          ak = 2·5k-1    for some integer k ≥1 
We show that the statement is also true for n = k + 1. i.e., 
         ak+1= 2·5 k+1-1 = 2·5 k 
Now   
          a k+1= 5·ak+1-1 [by definition of a1, a2, a3 …  or  by putting k+1 in (1)] 
      = 5·ak 
      = 5·(2·5k-1)  by inductive hypothesis 
      = 2·(5·5 k-1) 
     = 2·5 k+1-1 
     = 2·5k 
which was required. 
 
EXERCISE: 

         A sequence d1, d2, d3, … is defined by letting d1 = 2 and  
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for all integers k ≥ 2. Show that           for all integers n ≥ 1, using mathematical 
induction. 
 
SOLUTION: 
1.Basis Step:  
          For n = 1, the formula          ; n ≥1 gives 
 
 
  
 
which agrees with the definition of the sequence. 
 
2.Inductive Step:   
                    Suppose, the formula is true for n=k. i.e.,            
                             
                              for some integer k ≥ 1……………(1) 
 
We must show that 
 
 
  
Now, by the definition of the sequence. 
 
 
  
 
 
                                                                using (1) 
 
 
 
Hence the formula is also true for n = k + 1. Accordingly, the given formula defines all 
the terms of the sequence recursively. 
 
EXERCISE: 
                    Prove by mathematical induction that 
 
 
Whenever n is a positive integer greater than 1. 
SOLUTION: 
 
1. Basis Step: for n = 2 
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Clearly LHS < RHS 
Hence the statement is true for n = 2. 
 
2.Inductive Step:  

                      Suppose that the statement is true for some integers k > 1, i.e.; 
 
                                            (1) 
 
 
We need to show that the statement is true for n = k + 1. That is  
 
                                    (2) 
Consider the LHS of (2) 
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Lecture No.25   Methods of proof 

 
METHODS OF PROOF 
 
--  DIRECT PROOF 
--  DISPROOF BYCOUNTER EXAMPLE 
 
INTRODUCTION: 
                                To understand written mathematics, one must understand what makes  
up a correct mathematical argument, that is, a proof. This requires an under standing of 
the techniques used to build proofs. The methods we will study for building proofs are 
also used throughout computer science, such as the rules computers used to reason, the 
techniques used to verify that programs are correct, etc. 
Many theorems in mathematics are implications, p → q. The techniques of proving 
implications give rise to different methods of proofs. 

 
 

 
DIRECT PROOF: 

       The implication p →q can be proved by showing that if p is true, the 
q must also be true. This shows that the combination p true and q false never occurs. A 
proof of this kind is called a direct proof. 
 

p q p→q 
T T T
T F F
F T T
F F T

 

INDIRECT PROOF DIRECT PROOF 
p→q 

PROOF BY  
CONTRAPOSITION 

p →q≡ ~q→~p 

PROOF BY 
CONTRADICTION 
p →q ≡(p∧~q) →c 

METHODS OF PROOF
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SOME BASICS: 
          1.  An integer n is even if, and only if, n = 2k for some integer k. 
          2.  An integer n is odd if, and only if, n = 2k + 1 for some integer k. 
          3.  An integer n is prime if, and only if, n > 1 and for all positive integers r and s, if  
                n = r·s, then r = 1 or s = 1. 
          4.  An integer n > 1 is composite if, and only if, n = r·s for some positive integers r  
               and s with r ≠ 1 and s ≠ 1. 

          5. A real number r is rational if, and only if, a
b

 for some integers a and b with  b≠0. 

          6. If n and d are integers and d ≠0, then d divides n, written d | n if, and only if,               
              n =  d.k for some integers k. 
          7. An integer n is called a perfect square if, and only if, n = k2 for some integer k. 
 
EXERCISE: 
           Prove that the sum of two odd integers is even. 
SOLUTION: 
  Let m and n be two odd integers. Then by definition of odd numbers 
  m = 2k + 1 for some k ∈Z 
  n = 2l + 1 for some l ∈ Z 
Now m + n  = (2k + 1) + (2l + 1) 
  = 2k + 2l + 2 
  = 2 (k + l + 1) 
  = 2r  where r = (k + l + 1) ∈Z 
Hence m + n is even. 
 
EXERCISE: 
                      Prove that if n is any even integer, then    (-1)n = 1 
 
SOLUTION: 
                      Suppose n is an even integer. Then n = 2k for some integer k. 
Now 
  (-1) n= (-1)2k 
          = [(-1)2]k 
          = (1)k 
          = 1  (proved) 
 
EXERCISE: 
                      Prove that the product of an even integer and an odd integer is even. 
 
SOLUTION: 
                      Suppose m is an even integer and n is an odd integer. Then 

          m = 2k  for some integer k 
and     n = 2l + 1 for some integer l 

Now 
          m·n = 2k · (2l + 1) 
      = 2·k (2l + 1) 
      = 2·r where r = k(2l + 1) is an integer 

Hence m·n is even. (Proved) 
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EXERCISE: 
         Prove that the square of an even integer is even. 

 
SOLUTION: 

          Suppose n is an even integer. Then n = 2k 
Now 

  square of n = n2= (2·k)2 
        = 4k2 
       = 2·(2k2) 
       = 2·p  where p = 2k2 ∈Z 

Hence, n2 is even.                   (proved) 
 
EXERCISE: 

         Prove that if n is an odd integer, then n3 + n is even. 
 
SOLUTION: 

         Let n be an odd integer, then n = 2k + 1for some k ∈Z 
Now    n3 + n = n (n2 + 1) 

 = (2k + 1) ((2k+1)2 + 1) 
 = (2k + 1) (4k2 + 4k + 1 + 1) 
 = (2k + 1) (4k2 + 4k + 2) 
 = (2k + 1) 2. (2k2 + 2k + 1) 
 = 2·(2k + 1) (2k2 + 2k + 1)   k ∈Z 
 = an even integer    

 
EXERCISE: 

         Prove that, if the sum of any two integers is even, then so is their difference. 
 
SOLUTION: 

         Suppose m and n are integers so that m + n is even. Then by definition of 
even numbers 

   m + n = 2k   for some integer k 
      ⇒    m = 2k - n  ……………….(1) 

Now m - n = (2k - n) - n       using (1) 
 = 2k - 2n 
 = 2 (k - n) = 2r      where r = k - n is an integer 

Hence m - n is even. 
 
EXERCISE: 

         Prove that the sum of any two rational numbers is rational. 
 
SOLUTION: 

          Suppose r and s are rational numbers. 
Then by definition of rational 

 
 and     
   
for some integers a, b, c, d with b≠0 and d≠0 
 
 

b
ar =

d
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Now 
 
 
 
 
 
 
                                        where p = ad + bc ∈Z   and  q =bd ∈Z 
                                        and q ≠0 
Hence r + s is rational. 
 
EXERCISE: 
                     Given any two distinct rational numbers r and s with r < s. Prove that there is 
a rational number x such that r < x < s. 
SOLUTION: 
                      Given two distinct rational numbers r and s such that  
                       r < s                        ………………….(1) 
Adding r to both sides of (1), we get 
                       r + r < r + s 
                      2r < r + s 
⇒ 
 ………………….(2) 
 
Next adding s to both sides of (1), we get 
                     r + s < s + s 
⇒                 r + s < 2s 
 
⇒ ………………………(3) 
 
Combining (2) and (3), we may write 
 
                                            ……………………..(4) 
 
Since the sum of two rationals is rational, therefore  r + s is rational. Also the quotient of 
a rational by a non-zero rational, is rational, therefore    is rational and by (4)  it lies 
between r & s. 
Hence, we have found a rational number 
such that r < x < s.  (proved) 
 
EXERCISE: 
                     Prove that for all integers a, b and c, if a|b and b|c then a|c. 
PROOF: 
               Suppose a|b and b|c where a, b, c ∈Z. Then by definition of divisibility 
b=a·r and c=b·s for some integers r and s. 
Now       c = b·s 
                 = (a·r)·s  (substituting value of b) 
                 = a·(r·s)  (associative law) 
                 = a·k  where k = r·s ∈ Z 
      ⇒           a | c  by definition of divisibility   
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EXERCISE: 
                     Prove that for all integers a, b and c if a|b and a|c then a|(b+c) 
 
PROOF: 
                Suppose a|b and a|c where a, b, c ∈Z 
By definition of divides 
                b = a·r  and  c = a·s  for some r, s ∈Z 
Now 
                b + c= a·r + a·s  (substituting values) 
                        = a·(r+s)  (by distributive law) 
                        = a·k  where k = (r + s) ∈Z 
Hence     a|(b + c)  by definition of divides. 
 
EXERCISE: 
                     Prove that the sum of any three consecutive integers is divisible by 3. 
PROOF: 
              Let n, n + 1 and n + 2 be three consecutive integers. 
Now 
              n + (n + 1) + (n + 2)= 3n + 3 
                                              = 3(n + 1) 
                                              = 3·k where k=(n+1)∈Z 
Hence, the sum of three consecutive integers is divisible by 3. 
 
EXERCISE: 
                      Prove the statement: 
There is an integer n > 5 such that 2n - 1 is prime 
 
PROOF: 
               Here we are asked to show a single integer for which 2n -1is prime. First of all 
we will check the integers from 1 and check whether the answer is prime or not by 
putting these values in 2n-1.when we got the answer is prime then we will stop our 
process of checking the integers and we note that,  
Let  n = 7, then 
       2n  - 1 = 27  - 1 = 128 - 1 = 127 
and we know that 127 is prime. 
 
EXERCISE: 
Prove the statement: There are real numbers a and b such that 
  
 
PROOF: 
               Let  
 
Squaring, we get a + b  = a + b + 2 
⇒                          0    = 2           canceling a+b  
 
⇒                          0   =  
⇒                          0  =  ab  squaring 

baba +=+

baba +=+

ba
ba

ab
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⇒     either a = 0 or b = 0 
It means that if we want to find out the integers which satisfy the given condition then 
one of them must be zero. 
Hence if we let a = 0 and b = 3 then 
 
 
 
 
 
 
 
  
 
From above it quite clear that the given condition is satisfied if we take a=0 and b=3.  
 
PROOF BY COUNTER EXAMPLE: 
Disprove the statement by giving a counter example. 
For all real numbers a and b, if a < b then a 2  < b2. 
 
SOLUTION: 
                      Suppose a = -5  and   b = -2 
                      then clearly - 5 < - 2 
But  a2 = (-5)2 = 25 and b2 = (-2)2 = 4 
But   25 > 4 
This disproves the given statement. 
 
EXERCISE: 
                     Prove or give counter example to disprove the statement. 
For all integers n, n2 - n + 11 is a prime number. 
 
SOLUTION: 
The statement is not true 
For n = 11 
we have , n2 - n + 11= (11) 2 - 11 + 11 
                                 = (11) 2 
                                 = (11) (11) 
                                 =121 
which is obviously not a prime number. 
 
EXERCISE: 
Prove or disprove that the product of any two irrational numbers is an irrational number. 
 
SOLUTION: 
                      We know that              is an irrational number. Now 
 
which is a rational number. Hence the statement is disproved. 
 
EXERCISE: 
                     Find a counter example to the proposition: 
                                         For every prime number n, n + 2 is prime. 
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SOLUTION: 
                      Let the prime number n be 7, then  
                                             n + 2 = 7 + 2 = 9 
                                             which is not prime. 
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Lecture No.26   Proof by Contradiction 
 
 
PROOF BY CONTRADICTION: 
A proof by contradiction is based on the fact that either a statement is true or it is false but 
not both. Hence the supposition, that the statement to be proved is false, leads logically to 
a contradiction, impossibility or absurdity, then the supposition must be false. 
Accordingly, the given statement must be true.  
                This method of proof is also known as reductio ad absurdum because it relies 
on reducing a given assumption to an absurdity. 
 
Many theorems in mathematics are conditional statements (p→q). Now the negation of he 
implication p→q is 
                  ~(p→q) ≡ ~(~p∨q) 
                     ≡  ~(~p) ∧ (~q)  DeMorgan’s Law 
                     ≡  p ∧  ~q 
Clearly if the implication is true, then its negation must be false, i.e., leads to a 
contradiction. 
 
Hence ~(p→q) ≡ (p  ∧~q) → c, where c is a contradiction. 
 
Thus to prove an implication p → q by contradiction method, we suppose that the 
condition p and the negation of the conclusion q, i.e., (p ∧ ~q) is true and ultimately arrive 
at a contradiction. 
 
The method of proof by contradiction, may be summarized as follows: 
1. Suppose the statement to be proved is false. 
2. Show that this supposition leads logically to a contradiction. 
3. Conclude that the statement to be proved is true. 
 
THEOREM: 
                     There is no greatest integer. 
PROOF: 
    Suppose there is a greatest integer N. Then n ≤ N for every integer n.  
Let M = N + 1 
Now M is an integer since it is a sum of integers. 
Also M > N since M = N + 1 
Thus M is an integer that is greater than the greatest integer, which is a contradiction. 
Hence our supposition is not true and so there is no greatest integer. 
 
EXERCISE: 
                     Give a proof by contradiction for the statement: 
“If n2 is an even integer then n is an even integer.” 
 
PROOF: 
              Suppose n2 is an even integer and n is not even, so that n is odd. 
Hence n = 2k + 1 for some integer k. 
Now         n2 = (2k + 1) 2 
  = 4k2 + 4k + 1 
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  = 2·(2k2 + 2k) + 1 
  = 2r + 1 where r = (2k2 + 2k) ∈Z 
This shows that n2 is odd, which is a contradiction to our supposition that n2 is even. 
Hence the given statement is true. 
 
EXERCISE: 
                     Prove that if n is an integer and n3 + 5 is odd, then n is even using 
contradiction method. 
 
SOLUTION: 
                      Suppose that n3 + 5 is odd and n is not even (odd). Since n is odd and the 
product of two odd numbers is odd, it follows that n2 is odd and n3 = n2. n is odd. Further, 
since the difference of two odd number is even, it follows that  
  5 = (n3 + 5) - n3 
is even. But this is a contradiction. Therefore, the supposition that n3 + 5 and n are both 
odd is wrong and so the given statement is true. 
 
EXERCISE: 
                     Prove by contradiction method, the statement:  If n and m are odd integers, 
then n + m is an even integer. 
 
SOLUTION: 
                     Suppose n and m are odd and n + m is not even (odd i.e by taking 
contradiction). 
 Now  n = 2p + 1  for some integer p 
 and      m = 2q + 1  for some integer q 
Hence             n + m = (2p + 1) + (2q + 1) 
           = 2p + 2q + 2 = 2· (p + q + 1) 
which is even, contradicting the assumption that n + m is odd. 
 
THEOREM: 
The sum of any rational number and any irrational number is irrational. 
PROOF: 
We suppose that the negation of the statement is true. That is, we suppose that there is a 
rational number r and an irrational number s such that r + s is rational. By definition of 
ration      

                                          ……………(1) 
and 

                                          ……………(2) 
 
                                                                                                
for some integers a, b, c and d with b≠ 0 and d ≠ 0. 
Using (1) in (2), we get 

d
csr =+

b
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Now bc - ad and bd are both integers, since products and difference of integers are 
integers. Hence s is a quotient of two integers bc-ad and bd with bd ≠ 0. So by definition 
of rational, s is rational.  
 
This contradicts the supposition that s is irrational. Hence the supposition is false and the 
theorem is true. 
 
EXERCISE: 
                    Prove that    2  is irrational. 
 
PROOF: 
               Suppose 2       
 is rational. Then there are integers m and n with no common factors so that 

Squaring both sides gives 

 
Or     m2 = 2n2 ………………………(1) 
This implies that m2 is even (by definition of even). It follows that m is even. Hence 
     m = 2 k  for some integer k (2) 
Substituting (2) in (1), we get 
  (2k)2 = 2n2 
 ⇒  4k2 = 2n2 
 ⇒  n2 = 2k2 
This implies that n2 is even, and so n is even. But we also know that m is even. Hence 
both m and n have a common factor 2. But this contradicts the supposition that m and n 
have no common factors. Hence our supposition is false and so the theorem is true. 
Substituting (2) in (1), we get 
  (2k)2 = 2n2 
⇒   4k2 = 2n2 
⇒   n2 = 2k2 
This implies that n2 is even, and so n is even. But we also know that m is even. Hence 
both m and n have a common factor 2. But this contradicts the supposition that m and n 
have no common factors. Hence our supposition is false and so the theorem is true. 
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EXERCISE: 
                      Prove by contradiction that   6 7 2−   is irrational. 
 
 
PROOF: 
    Suppose  6 7 2−   is rational. 
Then by definition of rational, 

for some integers a and b with  b≠0. 
Now consider, 

Since a and b are integers, so are 6b-a and 7b and 7b≠0;  
hence 2  is a quotient of the two integers 6b-a and 7b with 7b≠0. 
Accordingly,  2   is rational (by definition of rational). 
This contradicts the fact because 2   is irrational. 
Hence our supposition is false and so 6 7 2−   is irrational. 
 
EXERCISE: 
Prove that for any integer a and any prime number p, if p|a, then P      (a + 1). 
 
PROOF: 
   Suppose there exists an integer a and a prime number p such that p|a and p|(a+1). 
Then by definition of divisibility there exist integer r and s so that 
  a = p·r and a + 1 = p·s 
It follows that 
           1 = (a + 1) - a 
      = p·s - p·r 
      = p·(s-r)  where  s – r ∈  Z 
This implies p | 1. 
But the only integer divisors of 1 are 1 and -1 and since p is prime p>1. This is a 
contradiction. 
 
Hence the supposition is false, and the given statement is true. 
 
 
 
EXERCISE: 
Prove that 2 + 3   is irrational. 
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SOLUTION: 
  Suppose 2 + 3   is rational. Then, by definition of rational, there exists 
integers a and b with b≠0 such that 

 
Squaring both sides, we get 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
Since a and b are integers, so are therefore a2 - 5b2 and 2b2 with 2b2≠0. Hence 6  is the 
quotient of two integers a2 - 2b2 and 2b2 with 22≠0. Accordingly, 6  is rational. But this 
is a contradiction, since 6  is not rational. Hence our supposition is false and so  

2 + 3   is irrational. 
 
REMARK: 

The sum of two irrational numbers need not be irrational  in general for          

which is rational. 
 
 
THEOREM: 
                      The set of prime numbers is infinite. 
 
PROOF: 
     Suppose the set of prime numbers is finite. 
Then, all the prime numbers can be listed, say, in ascending order: 
 p1 = 2, p2 = 3, p3 = 5, p4 = 7,  …, pn 
Consider the integer 
 N = p1.p2.p3. … . pn + 1 
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Then N > 1. Since any integer greater than 1 is divisible by some prime number p, 
therefore p | N. 
Also since p is prime, p must equal one of the prime numbers      
p1, p2, p3, … , pn .  
Thus  
P  |  (p1, p2, p3, … , pn) 
 
But then  
         P         (p1, p2, p3, … , pn+ 1) 
 
 
 
So      P       N 
 
Thus p | N and p       N, which is a contradiction. 
 
Hence the supposition is false and the theorem is true. 
 
PROOF BY CONTRAPOSITION: 
A proof by contraposition is based on the logical equivalence between a statement and its 
contrapositive.  Therefore, the implication p→ q can be proved by showing that its 
contrapositive ~ q → ~ p is true. The contrapositive is usually proved directly. 
The method of proof by contrapositive may be summarized as: 
        1.   Express the statement in the form if p then q. 
        2.   Rewrite this statement in the contrapositive form  
   if not q then not p. 
        3.   Prove the contrapositive by a direct proof. 
 
EXERCISE: 
                     Prove that for all integers n, if n2 is even then n is even. 
 
PROOF: 
               The contrapositive of the given statement is: 
“if n is not even (odd) then n2 is not even (odd)” 
We prove this contrapositive statement directly. 
Suppose n is odd. Then n = 2k + 1 for some k € Z 
Now n2 = (2k+1) 2= 4k2 + 4k + 1 
   = 2·(2k2 + 2k) + 1 
   = 2·r + 1 where r = 2k2 + 2k € Z 
Hence n2 is odd. Thus the contrapositive statement is true and so the given statement is 
true. 
 
EXERCISE: 
                     Prove that if 3n + 2 is odd, then n is odd. 
 
PROOF: 
              The contrapositive of the given conditional statement is 
“ if n is even then 3n + 2 is even” 
Suppose n is even, then 
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 n = 2k  for some k €Z 
Now 3n + 2 = 3 (2k) + 2 
  = 2. (3k + 1) 
  = 2.r  where r = (3k + 1) € Z 
Hence 3n + 2 is even. We conclude that the given statement is true since its contrapositive 
is true. 
 
EXERCISE: 
                    Prove that if n is an integer and n3 + 5 is odd, then n is even. 
PROOF: 
                Suppose n is an odd integer. Since, a product of two odd integers is odd, 
therefore n2 = n.n is odd; and n3 = n2.n is odd. 
Since a sum of two odd integers is even therefore n2 + 5 is even. 
Thus we have prove that if n is odd then n3 + 5 is even. 
Since this is the contrapositive of the given conditional statement, so the given statement 
is true. 
 
EXERCISE: 
Prove that if n2 is not divisible by 25, then n is not divisible by 5. 
 
SOLUTION: 
The contra positive statement is: 
“if n is divisible by 5, then n2  is divisible by 25” 
Suppose n is divisible by 5. Then by definition of divisibility 
  n = 5·k  for some integer k 
Squaring both sides 
 n2  = 25·k2   where k2 € Z 
 n2 is divisible by 25 
. 
EXERCISE: 
Prove that if |x| > 1 then x > 1 or x < -1 for all x € R. 
 
PROOF: 
               The contrapositive statement is: 
if x ≤ 1 and x≥-1 then |x| ≤ 1 for x € R. 
Suppose that x ≤1  and  x ≥-1 
⇒ x ≤1 and x  ≥ -1 
⇒ -1≤ x ≤ 1 
 and so 
 |x| ≤1 
Equivalently  |x| > 1    
 
EXERCISE: 
                     Prove the statement by contraposition: 
For all integers m and n, if m + n is even then m and n are both even or m and n are both 
odd. 
 
PROOF: 
              The contrapositive statement is: 
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“For all integers m and n, if m and n are not both even and m and n are not both odd, then 
m + n is not even.” 
Or more simply, 
“For all integers m and n, if one of m and n is even and the other is odd, then m + n is 
odd” 
Suppose m is even and n is odd. Then  
 m = 2p   for some integer p 
 and n = 2q + 1  for some integer q 
Now  m + n = (2p) + (2q + 1) 
  = 2·(p+q) + 1 
  = 2·r + 1 where r = p+q is an integer 
Hence m + n is odd. 
Similarly, taking m as odd and n even, we again arrive at the result that m + n is odd. 
Thus, the contrapositive statement is true. Since an implication is logically equivalent to 
its contrapositive so the given implication is true. 
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Lecture No.27   Algorithm 
 
PRE- AND POST-CONDITIONS OF AN ALGORITHM 
LOOP INVARIANTS 
LOOP INVARIANT THEOREM 
 
ALGORITHM: 
                           The word "algorithm" refers to a step-by-step method for performing 
some action. A computer program is, similarly, a set of instructions that are executed 
step-by-step for performing some specific task. Algorithm, however, is a more general 
term in that the term program refers to a particular programming language. 
 
INFORMATION ABOUT ALGORITHM: 
                                                                         The following information is generally 
included when describing algorithms formally: 
1.The name of the algorithm, together with a list of input and output variables. 
2.A brief description of how the algorithm works. 
3.The input variable names, labeled by data type. 
4.The statements that make the body of the algorithm, with explanatory comments. 
5.The output variable names, labeled by data type. 
6.An end statement. 
 
THE DIVISION ALGORITHM: 
 
THEOREM (Quotient-Remainder Theorem): 
                                                                             Given any integer n and a positive integer 
d, there exist unique integers q and r such that    n = d · q + r and 0 ≤ r < d. 
Example: 
a) n =  54, d = 4  54 = 4 · 13 + 2;  hence q = 13, r =2 
b) n = -54, d = 4 -54 = 4 · (-14) + 2;  hence q = -14, r =2 
c) n =  54, d = 70  54 = 70 · 0 + 54;  hence q = 0, r =54 
 
ALGORITHM (DIVISION) 
 
{Given a nonnegative integer a and a positive integer d, the aim of the algorithm is to find 
integers q and r that satisfy the conditions a = d · q + r and 0 ≤ r < d.  
This is done by subtracting d repeatedly from a until the result is less than d but is still 
nonnegative. 
The total number of d’s that are subtracted is the quotient q. The quantity a - d · q equals 
the remainder r.} 
Input: a {a nonnegative integer}, d {a positive integer} 
Algorithm body: r := a, q := 0 
{Repeatedly subtract d from r until a number less than d is obtained. Add 1 to d each time 
d is subtracted.} 
  
while (r≥ d) 
r := r - d q := q + 1 
end while 
Output: q, r 
end Algorithm (Division)  
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TRACING THE DIVISION ALGORITHM: 
 
Example: 
                Trace the action of the Division Algorithm on the input variables a = 54 and  
d = 11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
PREDICATE: 
Consider the sentence 
“Aslam is a student at the Virtual University.” 
let P stand for the words 
“is a student at the Virtual University” 
and let Q stand for the words 
                                          “is a student at.” 
Then both P and Q are predicate symbols. 
The sentences “x is a student at the Virtual University” and “x is a student at y” are 
symbolized as P(x) and Q(x, y), where x and y are predicate variables and take values in  
appropriate sets. When concrete values are substituted in place of predicate variables, a 
statement results. 
 
DEFINITION: 
                         A predicate is a sentence that contains a finite number of variables and 
becomes a statement when specific values are substituted for the variables.  
The domain of a predicate variable is the set of all values that may be substituted in place 
of the variable. 
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PRE-CONDITIONS AND POST-CONDITIONS: 
Consider an algorithm that is designed to produce a certain final state from a given state. 
Both the initial and final states can be expressed as predicates involving the input and 
output variables.  
Often the predicate describing the initial state is called the pre-condition of the 
algorithm and the predicate describing the final state is called the post-condition of the 
algorithm. 
 
EXAMPLE: 
1. Algorithm to compute a product of two nonnegative integers 
pre-condition: The input variables m and n are nonnegative integers. 
pot-condition: The output variable p equals m · n. 
2. Algorithm to find the quotient and remainder of the division of one positive integer by 
another 
pre-condition: The input variables a and b are positive integers. 
pot-condition: The output variable q and r are positive integers such that 
a = b · q + r and 0 ≤r < b. 
 
3. Algorithm to sort a one-dimensional array of real numbers 
Pre-condition: The input variable A[1], A[2], . . . A[n] is a one-dimensional array of real 
numbers. 
post-condition:The input variable B[1], B[2], . . . B[n] is a one-dimensional array of real 
numbers with same elements as A[1], A[2], . . . A[n] but with the property that B[i] ≤B[j] 
whenever i ≤ j. 
 
THE DIVISION ALGORITHM: 
[pre-condition: a is a nonnegative integer and 
d is a positive integer, r = a, and q = 0] 
while (r ≥ d) 
 1.  r := r – d  
            2.  q := q + 1 
end while 
[post-condition: q and r are nonnegative integers 
with the property that a = q · d + r and 0 ≤ r < d.] 
 
LOOP INVARIANTS: 
The method of loop invariants is used to prove correctness of a loop with respect to 
certain pre and post-conditions. It is based on the principle of mathematical induction. 
[pre-condition for loop] 
while (G) 
    [Statements in body of loop. None contain branching statements that lead 
outside the loop.] 
end while[post-condition for loop]  
 
 
DEFINITION: 
                         A loop is defined as correct with respect to its pre- and post-conditions 
if, and only if, whenever the algorithm variables satisfy the pre-condition for the loop and 
the loop is executed, then the algorithm variables satisfy the post-condition of the loop. 
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THEOREM: 
Let a while loop with guard G be given, together with pre- and post conditions that are 
predicates in the algorithm variables.  
Also let a predicate I(n), called the loop invariant,  be given. If the following four 
properties are true, then the loop is correct with respect to its pre- and post-conditions. 
I.Basis Property: The pre-condition for the loop implies that I(0) is true before the first 
iteration of the loop.  
II.Inductive property: If the guard G and the loop invariant I(k) are both true for an 
integer k ≥ 0 before an iteration of the loop, then I(k + 1) is true after iteration of the loop. 
III.Eventual Falsity of Guard: After a finite number of iterations of the loop, the guard 
becomes false. 
IV.Correctness of the Post-Condition: If N is the least number of iterations after which 
G is false and I(N) is true, then the values of the algorithm variables will be as specified 
in the post-condition of the loop. 
 
PROOF: 
Let I(n) be a predicate that satisfies properties I-IV of the loop invariant theorem. 
Properties I and II establish that: 
For all integers n  ≥  0, if the while loop iterates n times, then I(n) is true. 
Property III indicates that the guard G becomes false after a finite number N of iterations. 
Property IV concludes that the values of the algorithm variables are as specified by the 
post-condition of the loop. 
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Lecture No.28   Division algorithm 
 
                                       
CORRECTNESS OF: 
LOOP TO COMPUTE A PRODUCT 
THE DIVISION ALGORITHM 
THE EUCLIDEAN ALGORITHM 
 
 A LOOP TO COMPUTE A PRODUCT: 
[pre-condition: m is a nonnegative integer, 
x is a real number, i = 0, and product = 0.] 
while (i # m) 
 1.   product := product + x   
            2.   i := i + 1 
end while 
[post-condition: product = m · x] 
 
PROOF: 
              Let the loop invariant be 
              I(n):  i = n and product = n · x 
             The guard condition G of the while loop is  
                 G:  i # m 
 
I.Basis Property: 
                           [I(0) is true before the first iteration of the loop.] 
  I(0): i = 0 and product = 0 · x = 0 
Which is true before the first iteration of the loop. 
 
II.Inductive property:  
                                    [If the guard G and the loop invariant I(k) are both true before a 
loop iteration (where k≥ 0), then I(k + 1) is true after the loop iteration.]  
Before execution of statement 1, 
                                productold = k · x. 
Thus the execution of statement 1 has the following effect: 
productnew = productold + x = k · x + x = (k + 1) · x 
Similarly, before statement 2 is executed, 
iold = k, 
So after execution of statement 2, 
inew = iold + 1 = k + 1. 
Hence after the loop iteration, the statement I(k +1) (i.e., i = k + 1 and product =  (k + 1) · 
x) is true. This is what we needed to show.  
 
III.Eventual Falsity of Guard:  
                                                   [After a finite number of iterations of the loop, the guard 
becomes false.]  
 
 
 
 



28-Division Algorithm    VU                       
 
 

 
© Copyright Virtual University of Pakistan 

206

IV.Correctness of the Post-Condition:  
                                                               [If N is the least number of iterations after which 
G is false and I(N) is true, then the values of the algorithm variables will be as specified 
in the post-condition of the loop.]  
 
THE DIVISION ALGORITHM: 
[pre-condition: a is a nonnegative integer and 
d is a positive integer, r = a, and q = 0] 
 
while (r ≥  d) 
 1. r := r – d  
            2. q := q + 1 
 
end while 
[post-condition: q and r are nonnegative integers 
with the property that a = q · d + r and 0 ≤ r < d.] 
 
PROOF: 
              Let the loop invariant be 
              I(n): r = a -  n · d  and n = q. 
The guard of the while loop is  
                  G: r ≥  d 
I.Basis Property:  
                            [I(0) is true before the first iteration of the loop.] 
                         I(0): r = a -  0 · d = a and 0 = q. 
II.Inductive property: 
                            [If the guard G and the loop invariant I(k) are both true before a loop 
iteration (where k≥  0), then I(k + 1) is true after the loop iteration.]  
                         I(k): r = a -  k · d ≥  0 and k = q 
                           I(k + 1): r = a -  (k + 1) · d ≥  0 and k + 1 = q      
     rnew = r -  d  
            = a -  k · d -  d  
           = a -  (k + 1) · d 
       q = q + 1  
          = k + 1 
also 
     rnew= r -  d   
 ≥  d -  d = 0 (since r  ≥ 0) 
Hence I(k + 1) is true. 
III.Eventual Falsity of Guard:  
                                                   [After a finite number of iterations of the loop, the guard 
becomes false.]  
IV.Correctness of the Post-Condition:  
                                                                [If N is the least number of iterations after which 
G is false and I(N) is true, then the values of the algorithm variables will be as specified 
in the post-condition of the loop.]  
G is false and I(N) is true. 
That is, r  ≥ d and  r = a -  N · d ≥ 0 and N = q. 
or          r  = a -  q · d  
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or          a  =  q · d + r 
Also combining the two inequalities involving r we get 
0 ≤ r < d 
 
THE EUCLIDEAN ALGORITHM: 
The greatest common divisor (gcd) of two integers a and b is the largest integer that 
divides both a and b. For example, the gcd of 12 and 30 is 6. 
The Euclidean algorithm takes integers A and B with A > B ≥  0 and compute their 
greatest common divisor.  
 
HAND CALCULATION OF gcd: 
Use the Euclidean algorithm to find gcd(330, 156) 
 
SOLUTION:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXAMPLE: 
                    Use the Euclidean algorithm to find gcd(330, 156) 
Solution: 
1.Divide 330 by 156: 
                   This gives 330 = 156 · 2 + 18 
2.Divide 156 by 18: 
                   This gives 156 = 18 · 8 + 12 
3.Divide 18 by 12: 
                   This gives 18 = 12 · 1 + 6 
4.Divide 12 by 6: 
                   This gives 12 = 6 · 2 + 0 
Hence gcd(330, 156) = 6. 
 
 
LEMMA: 
If a and b are any integers with b ≠ 0 and q and r are nonnegative integers such that 
a = q · d + r 

Hence gcd(330, 156) = 6 
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then 
gcd(a, b) = gcd(b, r) 
[pre-condition: A and  B are integers with 
A > B  ≥ 0, a = A, b = B, r = B.] 
 
while (b ≠ 0) 
 1. r := a mod b  
           2. a := b  
           3. b := r 
 
end while[post-condition: a = gcd(A, B)] 
 
PROOF: 
              Let the loop invariant be 
              I(n): gcd(a, b) = gcd(A, B) and 0 ≤ b < a. 
The guard of the while loop is  
                G: b ≠  0 
 
I.Basis Property: 
                           [I(0) is true before the first iteration of the loop.] 
                         I(0):  gcd(a, b) = gcd(A, B) and 0 ≤ b < a. 
According to the precondition, 
                           a = A, b = B, r = B, and  0 ≤ B < A. 
Hence I(0) is true before the first iteration of the loop. 
 
II.Inductive property:  
                                    [If the guard G and the loop invariant I(k) are both true before a 
loop iteration (where k ≥  0), then I(k + 1) is true after the loop iteration.]  
 Since I(k) is true before execution of the loop we have, 
gcd(aold, bold) = gcd(A, B) and 0 ≤ bold < aold 
After execution of statement 1, 
                            rnew = aold mod boldThus, 
                           aold  = bold · q + rnew       for some integer q  
with, 
                           0 ≤rnew < bold. 
But 
                         gcd(aold, bold) = gcd(bold, rold) 
and we have, 
                         gcd(bold, rnew) = gcd(A, B) 
When statements 2 and 3 are executed, 
                         anew= bold and bnew = rnew 
It follows that 
                         gcd(anew, bnew) = gcd(A, B) 
Also, 
                         0 ≤rnew < bold 
becomes 
                         0 ≤ bnew < anew 
Hence I(k + 1) is true. 
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III.Eventual Falsity of Guard:  
                                                   [After a finite number of iterations of the loop, the guard 
becomes false.]  
 
IV.Correctness of the Post-Condition:  
                                                                [If N is the least number of iterations after which 
G is false and I(N) is true, then the values of the algorithm variables will be as specified 
in the post-condition of the loop.]  
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Lecture No.29   Combinatorics 
 
 
COMBINATORICS 
THE SUM RULE 
THE PRODUCT RULE 
 

COMBINATORICS: 
Combinatorics is the mathematics of counting and arranging objects. Counting of objects 
with certain properties (enumeration) is required to solve many different types of problem 
 
For example, counting is used to: 
 

1) Determine number of ordered or unordered arrangement of objects. 
2) Generate all the arrangements of a specified kind which is important in computer 

simulations. 
3) Compute probabilities of events. 
4) Analyze the chance of winning games, lotteries etc. 
5) Determine the complexity of algorithms.  

 
THE SUM RULE: 
If one event can occur in n1 ways, a second event can occur in n2 (different) ways, then 
the total number of ways in which exactly one of the events (i.e., first or second) can 
occur is n1 + n2. 
 
EXAMPLE: 
                     Suppose there are 7 different optional courses in Computer Science and 3 
different optional courses in Mathematics. Then there are  7 + 3 = 10  
choices for a student who wants to take one optional course. 
 
EXERCISE: 
                     A student can choose a computer project from one of the three lists. The 
three lists contain 23, 15 and 19 possible projects, respectively. How many possible 
projects are there to choose from? 
 
SOLUTION: 
                     The student can choose a project from the first list in 23 ways, from the 
second list in 15 ways, and from the third list in 19 ways. Hence, there are  
  23 + 15 + 19 = 57  projects to choose from. 
 
GENERALIZED SUM RULE 
 
If one event can occur in n1 ways, 
a second event can occur in n2 ways, 
a third event can occur in n3 ways, 
…………………………………….. 
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then there are 
 n1 + n2 + n3 + …  ways in which exactly one of the events can occur. 
 
SUM RULE IN TERMS OF SETS: 
If A1, A2, …, Am  are finite disjoint sets, then the number of elements in the union of these 
sets is the sum of the number of elements in them. 
 
If n(Ai) denotes the number of elements in set Ai  for i = 1, 2, …, m, then 
         n(A1∪A2∪ … ∪Am) = n (A1) + n(A2) + … + n(Am)  

                                                                        where Ai∩Aj =  φ    if   i ≠  j 
THE PRODUCT RULE: 
If one event can occur in n1 ways and if for each of these n1 ways, a second event can 
occur in n2 ways, then the total number of ways in which both events occur is n1 · n2. 
EXAMPLE: 
                    Suppose there are 7 different optional courses in Computer Science and 3 
different optional courses in Mathematics. A student who wants to take one optional 
course of each subject, there are 7 × 3 = 21  choices. 
 
EXAMPLE: 
                    The chairs of an auditorium are to be labeled with two characters, a letter 
followed by a digit. What is the largest number of chairs that can be labeled differently? 
SOLUTION: 
                     The procedure of labeling a chair consists of two events, namely,  

1. Assigning one of the 26 letters:  A, B, C, …, Z and 
2. Assigning one of the 10 digits:  0, 1, 2, …, 9 

 
      By product rule, there are   26 × 10 = 260  different ways that a chair can be labeled 
by both a letter and a digit. 
 
GENERALIZED PRODUCT RULE: 
If some event can occur in n1 different ways, and if, following this event, a second event 
can occur in n2 different ways, and following this second event, a third event can occur in 
n3 different ways, …, then the number of ways all the events can occur in the order 
indicated is n1 · n2 · n3 · … 
 
PRODUCT RULE IN TERMS OF SETS: 
If A1, A2, …, Am are finite sets, then the number of elements in the Cartesian product of 
these sets is the product of the number of elements in each set.  
If n(Ai) denotes the number of elements in set Ai, then 
n(A1 × A2× … ×Am) =  n (A1) · n(A2) ·… ·n (Am,) 
 
 
EXERCISE: 
                    Find the number n of ways that an organization consisting of 15 members 
can elect a president, treasurer, and secretary. (assuming no person is elected to more than 
one position) 
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SOLUTION: 
                     The president can be elected in 15 different ways; following this, the 
treasurer can be elected in 14 different ways; and following this, the secretary can be 
elected in 13 different ways.  
Thus, by product rule, there are 
                         n = 15 × 14 × 13 = 2730 
            different ways in which the organization can elect the officers. 
 
EXERCISE: 
                     There are four bus lines between A and B; and three bus lines between B and 
C. Find the number of ways a person can travel: 
(a) By bus from A to C by way of B; 
(b) Round trip by bus from A to C by way of B; 
(c) Round trip by bus from A to C by way of B, if the person does not want to use a bus 
line more than once. 
SOLUTION: 
(a) There are 4 ways to go from A to B and 3 ways to go from B to C; hence there are 
      4 × 3 = 12  ways to go from A to C by way of B. 
 
(b) The person will travel from A to B to C to B to A for the round trip. 
       i.e (A →B →C →B →A) 
The person can travel 4 ways from A to B and 3 way from B to C and back. 

 i.e., 
4 3 3 4

A B C B A→ → → →  
Thus there are 4 ×3 ×3 × 4 = 144 ways to travel the round trip. 
 
(c) The person can travel 4 ways from A to B and 3 ways from B to C, but only 2 ways 
from C to B and 3 ways from B to A, since bus line cannot be used more than once. Thus 

 i.e.,  
4 3 2 3

A B C B A→ → → →  
Hence there are 4 ×3 ×2 × 3 = 72 ways to travel the round trip without using a bus line 
more than once. 
 
EXERCISE: 
                    A bit string is a sequence of 0’s and 1’s.How many bit string are there of 
length 4? 
SOLUTION: 
                     Each bit (binary digit) is either 0 or 1. 
Hence, there are 2 ways to choose each bit. Since we have to choose four bits therefore, 
the product rule shows, there are a total of   2 ×2 ×2 ×2 = 2

4
 = 16 

different bit strings of length four. 
 
EXERCISE: 
                     How many bit strings of length 8  
(i)   begin with a 1? (ii) begin and end with a 1? 
SOLUTION: 
(i) If the first bit (left most bit) is a 1, then it can be filled in only one way. Each of the 
remaining seven positions in the bit string can be filled in 2 ways (i.e., either by 0 or 1). 
Hence, there are   1 ×2 ×2 ×2 × 2 ×2 ×2 ×2 = 2

7
 = 128 

different bit strings of length 8 that begin with a 1. 
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(ii)If the first and last bit in an 8 bit string is a 1, then only the intermediate six bits can be 
filled in 2 ways, i.e. by a 0 or 1. Hence there are    1 ×2 ×2 ×2× 2 ×2 ×2 ×1 = 2

6
 = 64 

different bit strings of length 8 that begin and end with a 1. 
 
EXERCISE: 
                     Suppose that an automobile license plate has three letters followed by three 
digits. 
(a) How many different license plates are possible? 
 
 
SOLUTION: 
                      Each of the three letters can be written in 26 different ways, and each of the 
three digits can be written in 10 different ways. 
 
 
 
 
 
 
 
 
 
 
 
Hence, by the product rule, there is a total of  
26 × 26 × 26 × 10 × 10 × 10 = 17,576,000 
different license plates possible. 
 
(b) How many license plates could begin with A and end on 0? 
SOLUTION: 
The first and last place can be filled in one way only, while each of second and third place 
can be filled in 26 ways and each of fourth and fifth place can be filled in 10 ways. 
 
 
 
 
 
 
 
 
 
 
 
Number of license plates that begin with A and end in 0 are 
                                  1 × 26 × 26 × 10 × 10 × 1 = 67600 
 
 
 
 

26 ways each 10 ways each 

0 A 

letters 
digits 

26 ways each 10 ways each one way 
one way

letters digits 
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(c) How many license plates begin with PQR 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 
Number of license plates that begin with PQR are 
  1 × 1 × 1 × 10 × 10 × 10 = 1000 
 
(d) How many license plates are possible in which all the letters and digits are distinct? 
SOLUTION: 
                      The first letter place can be filled in 26 ways. Since, the second letter place 
should contain a different letter than the first, so it can be filled in 25 ways. Similarly, the 
third letter place can be filled in 24 ways.And the digits can be respectively filled in  
10, 9, and 8 ways. 
Hence; number of license plates in which all the letters and digits are distinct are 
26 × 25 × 24 × 10 × 9 × 8 = 11, 232, 000 
 
(e) How many license plates could begin with AB and have all  three letters and digits 
distinct. 
SOLUTION:  
 
 
 
 
 
 
 
 
The first two letters places are fixed (to be filled with A and B), so there is only one way 
to fill them. The third letter place should contain a letter different from A & B, so there 
are 24 ways to fill it.  
The three digit positions can be filled in 10 and 8 ways to have distinct digits. 
Hence, desired number of license plates are  
1 × 1 × 24 × 10 × 9 × 8 = 17280 
 
EXERCISE: 
                    A variable name in a programming language must be either a letter or a letter 
followed by a digit. How many different variable names are possible? 
 
SOLUTION: 
                     First consider variable names one character in length. Since such names 
consist of a single letter, there are 26 variable names of length 1. 

24 ways 10 ways 8 ways 

 R Q P 

letters digits 

10 ways each one way each 

  B A 

letters digits 

9 ways one way  
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Next, consider variable names two characters in length. Since the first character is a letter, 
there are 26 ways to choose it. The second character is a digit, there are 10 ways to 
choose it. Hence, to construct variable name of two characters in length, there are   
 26×10 = 260 ways. 
Finally, by sum rule, there are 26 + 260 = 286 possible variable names in the 
programming language. 
 
EXERCISE: 
(a) How many bit strings consist of from one through four digits? 
(b) How many bit strings consist of from five through eight digits? 
SOLUTION: 
(a) Number of bit strings consisting of 1 digit = 2 
     Number of bit strings consisting of 2 digits = 2·2 = 2

2
  

     Number of bit strings consisting of 3 digits = 2·2·2 = 2
3 

     Number of bit strings consisting of 4 digits = 2·2·2·2 = 2
4 

Hence by sum rule, the total number of bit strings consisting of one through four digit is 
2+2

2
 +2

3
 +2

4
  = 2 + 4 + 8 + 16 = 30 

 
(b) Number of bit strings of 5 digits = 2

5 
     Number of bit strings of 6 digits = 2

6 
     Number of bit strings of 7 digits = 2

7 
     Number of bit strings of 8 digits = 2

8 
Hence, by sum rule, the total number of bit strings consisting of five through eight digit is 
     2

5
  + 2

6
  + 2

7
  + 2

8
  = 480 

 
EXERCISE: 
                     How many three-digit integers are divisible by 5? 
SOLUTION: 
                     Integers that are divisible by 5, end either in 5 or in 0. 
CASE-I    (Integers that end in 0) 
There are nine choices for the left-most digit (the digits 1 through 9) and ten choices for 
the middle digit.(the digits 0 through 9) Hence, total number of 3 digit integers that end  
in 0 is 
 
9 × 10 × 1 = 90 
 
 
 
 
 
 
 
 
 
CASE-II  (Integer that end in 5) 
There are nine choices for the left-most digit and ten choices for the middle digit 
Hence, total number of 3 digit integers  that end in 5 is 
9 × 10 × 1 = 90 

0 

9 choices 

10 choices 

one choice 
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Finally, by sum rule, the number of 3 digit integers that are divisible by 5 is 
90 + 90 = 180 
 
 
 
 
 
 
 
 
EXERCISE: 
                      A computer access code word consists of from one to three letters of 
English alphabets with repetitions allowed. How many different code words are possible. 
SOLUTION: 
           Number of code words of length 1 = 26

1
 

           Number of code words of length 2 = 26
2 

           Number of code words of length 3 = 26
3 

Hence, the total number of code words = 26
1
  + 26

2
  + 26

3 
        = 18,278 
 
NUMBER OF ITERATIONS OF A NESTED LOOP: 
Determine how many times the inner loop will be iterated when the following algorithm 
is implemented and run 
 for i: = 1 to 4         
for  j : = 1 to 3        
 [Statement in body of inner loop.      
                                                            None contain branching statements   
   that lead out of the inner loop.]    
    next j        
    next i 
SOLUTION: 
                     The outer loop is iterated four times, and during each iteration of the outer 
loop, there are three iterations of the inner loop. Hence, by product rules the total number 
of iterations of inner loop is 4·3=12 
 
EXERCISE: 
                    Determine how many times the inner loop will be iterated when the 
following algorithm is implemented and run. 
 for i = 5 to 50        
for  j: = 10 to 20        
           [Statement in body of inner loop.     
                                                           None contain branching statements   
 that lead out of the inner loop.]    
   next j       
   next i 
SOLUTION: 
                     The outer loop is iterated 50 - 5 + 1 = 46 times and during each iteration of 
the outer loop there are 20 - 10 + 1 = 11 iterations of the inner loop. Hence by product 
rule, the total number of iterations of the inner loop is 46×11 = 506 

5 

9 choices
10 choices 

one choice
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EXERCISE: 
                    Determine how many times the inner loop will be iterated when the 
following algorithm is implemented and run. 
  for i: = 1 to 4 
for j: = 1 to i 
 [Statements in body of inner loop. 
                 None contain branching statements  
 that lead outside the loop.] 
    next j 
    next i   
 
SOLUTION: 
                     The outer loop is iterated 4 times, but during each iteration of the outer loop, 
the inner loop iterates different number of times. 
For first iteration of outer loop, inner loop iterates 1 times. 
For second iteration of outer loop, inner loop iterates 2 times. 
For third iteration of outer loop, inner loop iterates 3 times. 
For fourth iteration of outer loop, inner loop iterates 4 times. 
Hence, total number of iterations of inner loop = 1 + 2 + 3 + 4 = 10 
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Lecture No.30   Permutations 
 
FACTORIAL 
K-SAMPLE 
K-PERMUTATION 
 
FACTORIAL OF A POSITIVE INTEGER: 
For each positive integer n, its factorial is defined to be the product of all the integers 
from 1 to n and is denoted n!. Thus    n! = n(n - 1) (n - 2) … 3⋅2 ⋅1 
In addition, we define 
  0! = 1 
REMARK: 
       n! can be recursively defined as 
Base:  0! = 1 
Recursion n! = n (n - 1)! for each positive integer n. 
 
EXERCISE: 
Compute each of the following 
 
 
 
 
  
SOLUTION: 
 
 
 
 
 
 
 
 
  
EXERCISE: 
Write in terms of factorials. 
(i) 25⋅24 ⋅23 ⋅22  (ii) n(n-1)(n-2) … (n - r + 1) 
 
 
 
 
SOLUTION: 
 
 
 
 
 
 
 
 
 

7!( ) ( ) ( 2)!
5!
( 1)! ( 1)!( ) ( )

! ( 1)!

i ii

n niii iv
n n

−

+ −
+

2

7 ! 7 6 5!( ) 7 6 42
5! 5!

( ) ( 2)!  is not defined 
( 1)! ( 1) !( ) 1

! !
( 1)! ( 1)! 1 1( )
( 1)! ( 1) ( 1)! ( 1)

i

ii
n n niii n

n n
n niv
n n n n n n n n

⋅ ⋅
= = ⋅ =

−
+ +

= = +

− −
= = =

+ + ⋅ ⋅ − + +

( 1)( 2) ( 1)(iii)
1 2 3 ( 1)

n n n n r
r r

− − ⋅⋅ ⋅ − +
⋅ ⋅ ⋅ ⋅ ⋅ − ⋅

25 24 23 22 21! 25!( ) 25 24 23 22
21! 21!

( 1)( 2) ( 1)( )!( ) ( 1)( 2) ( 1)
( )!

!
( )!

i

n n n n r n rii n n n n r
n r

n
n r

⋅ ⋅ ⋅ ⋅
⋅ ⋅ ⋅ = =

− − ⋅⋅⋅ − + −
− − ⋅⋅⋅ − + =

−

=
−
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COUNTING FORMULAS: 
From a given set of n distinct elements, one can choose k elements in different ways. The 
number of selections of elements varies according as: 
(i)elements may or may not be repeated. 
(ii)the order of elements may or may not matter. 
These two conditions therefore lead us to four counting methods summarized in the 
following table. 
 
 
 
 
 
 
 
 
 
 
K-SAMPLE: 
A k-sample of a set of n elements is a choice of k elements taken from the set of n 
elements such that the order of elements matters and elements can be repeated. 
 
REMARK: 
     With k-sample, repetition of elements is allowed, therefore, k need not be less 
than or equal to n. i.e. k is independent of n. 
 
FORMULA FOR K-SAMPLE: 
Suppose there are n distinct elements and we draw a k-sample from it. The first element 
of the k-sample can be drawn in n ways. Since, repetition of elements is allowed, so the 
second element can also be drawn in n ways. 
Similarly each of third, fourth, …, k-th element can be drawn in n ways. 
Hence, by product rule, the total number of ways in which a k-sample can be drawn from 
n distinct elements is 
  n ⋅ n ⋅ n ⋅ … ⋅ n (k-times) 
  = n

k 
 
 
EXERCISE: 
                     How many possible outcomes are there when a fair coin is tossed three 
times. 
 
 

  ORDER    
MATTERS

ORDER 
DOES   
NOT 
MATTER

REPETITION 
ALLOWED 

k-sample k-selection 

REPETITION 
NOT  
ALLOWED 

k-permutation k-
combination 

( 1)( 2) ( 1) ( 1)( 2) ( 1)( )
1 2 3 ( 1) !

( 1)( 2) ( 1)( )!
!( )!

!
!( )!

n n n n r n n n n riii
r r r

n n n n r n r
r n r

n
r n r

− − ⋅⋅ ⋅ − + − − ⋅⋅ ⋅ − +
=

⋅ ⋅ ⋅ ⋅ ⋅ − ⋅
− − ⋅ ⋅ ⋅ − + −

=
−

=
−
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SOLUTION: 
          Each time a coin is tossed it’s outcome is either a head (H) or a tail (T). 
Hence in successive tosses, H and T are repeated. Also the order in which they appear is 
important. Accordingly, the problem is of 3-samples from a set of two elements H and T. 
[k = 3, n = 2] 
Hence number of samples = n

k 

    = 2
3
 = 8 

These 8-samples may be listed as: 
HHH, HHT, HTH, THH, HTT, THT, TTH, TTT 
 
EXERCISE: 
                     Suppose repetition of digits is permitted. 
(a)How many three-digit numbers can be formed from the six digits 2, 3, 4, 5, 7 and 9 
SOLUTION: 
          Given distinct elements = n = 6 
          Digits to be chosen = k = 3 
While forming numbers, order of digits is important. Also digits may be repeated.  
Hence, this is the case of 3-sample from 6 elements. 
Number of 3-digit numbers = n

k
 = 6

3
 = 216 

 
(b) How many of these numbers are less than 400? 
SOLUTION: 
                     From the given six digits 2, 3, 4, 5, 7 and 9, a three-digit number would be 
less than 400 if and only if its first digit is either 2 or 3. 
The next two digits positions may be filled with any one of the six digits. 
Hence, by product rule, there are  
   2⋅6 ⋅6 = 72 
three-digit numbers less than 400. 
 
(c) How many are even? 
SOLUTION: 
         A number is even if its right most digit is even. Thus, a 3-digit number 
formed by the digits 2, 3, 4, 5, 7 and 9 is even if it last digit is 2 or 4. Thus the last digit 
position may be filled in 2 ways only while each of the first two positions may be filled in 
6 ways. 
Hence, there are  
   6 ⋅ 6 ⋅ 2 = 72 
3-digit even numbers. 
 
(d) How many are odd? 
SOLUTION: 
                    A number is odd if its right most digit is odd. Thus, a 3-digit number formed 
by the digits 2, 3, 4, 5, 7 and 9 is odd if its last digit is one of 3, 5, 7, 9. Thus, the last digit 
position may be filled in 4 ways, while each of the first two positions may be filled in 6 
ways. 
Hence, there are    6 ⋅ 6 ⋅ 4 = 144    
3-digit odd numbers. 
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(e) How many are multiples of 5? 
SOLUTION: 
                     A number is a multiple of 5 if its right most digit is either 0 or 5. Thus, a 3-
digit number formed by the digits 2, 3, 4, 5, 7 and 9 is multiple of 5 if its last digit is 5.  
Thus, the last digit position may be filled in only one way, while each of the first two 
positions may be filled in 6 ways. 
Hence, there are   6 ⋅ 6 ⋅1 = 36     
3-digit numbers that are multiple of 5. 
 
EXERCISE: 
                   A box contains 10 different colored light bulbs. Find the number of ordered 
samples of size 3 with replacement. 
SOLUTION: 
          Number of light bulbs = n = 10 
          Bulbs to be drawn = k = 3 
Since bulbs are drawn with replacement, so repetition is allowed. Also while drawing a 
sample, order of elements in the sample is important. 
Hence number of samples of size 3 = n

k 

     = 10
3 

     = 1000 
EXERCISE: 
                   A multiple choice test contains 10 questions; there are 4 possible answers for 
each question. 
(a) How many ways can a student answer the questions on the test if every question is 
answered? 
(b) How many ways can a student answer the questions on the test if the student can leave 
answers blank? 
 
SOLUTION: 
(a) Each question can be answered in 4 ways. Suppose answers are labeled as A, B, C, D. 
Since label A may be used as the answer of more than one question. So repetition is 
allowed. Also the order in which A, B, C, D are choosed as answers for 10 questions is 
important. Hence, this is the one of k-sample, in which 
  n = no. of distinct labels = 4 
  k = no. of labels selected for answering = 10 
 ∴ No. of ways to answer 10 questions  = n

k 

      = 4
10 

      = 1048576 
(b)If the student can leave answers blank, then in addition to the four answers, a fifth 
option to leave answer blank is possible. Hence, in such case 
  n = 5 
 and k = 10 (as before) 
 ∴ No. of possible answers= n

k 

     = 5
10 

     = 9765625 
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k-PERMUTATION: 
A k-permutation of a set of n elements is a selection of k elements taken from the set of n 
elements such that the order of elements matters but repetition of the elements is not 

allowed. The number of k-permutations of a set of n elements is denoted P(n, k) or 
n

k
p . 

REMARK: 
1. With k-permutation, repetition of elements is not allowed, therefore k ≤ n. 
2. The wording “number of permutations of a set with n elements” means that all n 
elements are to be permuted, so that  k = n. 
FORMULA FOR k-PERMUTATION: 
Suppose a set of n elements is given. Formation of a k-permutation means that we have 
an ordered selection of k elements out of n, where elements cannot be repeated. 
1st element can be selected in n ways 
2nd element can be selected in (n-1) ways 
3rd element can be selected in (n-2) ways 
…………………………………. 
kth element can be selected in (n-(k-1)) ways 
Hence, by product rule, the number of ways to form a k-permutation is  
 
 
 
 
 
 
 
 
 
EXERCISE: 
                     How many 2-permutation are there of {W, X, Y, Z}? Write them all. 
 
SOLUTION: 
                     Number of 2-permutation of 4 elements is 
 
 
 
 
 
  
 
These 12 permutations are: 
                                    WX, WY, WZ,  
                                    XW, XY, XZ, 
                                    YW, YX, YZ,  
                                    ZW, ZX, ZY. 
EXERCISE: 
 
Find (a) P(8, 3)  (b) P(8,8) 
 (c) P(8,1)  (d) P(6,8) 
 
 

( , ) ( 1) ( 2) ( ( 1))
( 1) ( 2) ( 1)

[ ( 1) ( 2) ( 1)][( )( 1) 3 2 1]
[( )( 1) 3 2 1]

!
( )!

P n k n n n n k
n n n n k
n n n n k n k n k

n k n k
n

n k

= ⋅ − ⋅ − ⋅ ⋅ ⋅ − −
= ⋅ − ⋅ − ⋅ ⋅ ⋅ − +

⋅ − ⋅ − ⋅ ⋅ ⋅ − + − − − ⋅ ⋅ ⋅ ⋅ ⋅
=

− − − ⋅ ⋅ ⋅ ⋅ ⋅

=
−

4

2

4!(4,2)
(4 2)!

4 3 2!
2!

4 3 12

P p= =
−

⋅ ⋅
=

= ⋅ =
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SOLUTION: 
 
 
 
 
 
 
 
 
 
  
 
EXERCISE: 
                     Find n if 
                      (a)  P(n,2) = 72  (b) P(n,4) = 42 P (n, 2) 
 
SOLUTION: 
 (a)     Given P(n,2) = 72 
  ⇒ n ⋅ (n-1) = 72 (by using the definition of permutation) 
  ⇒ n

2
 -n = 72 

  ⇒ n
2
 - n - 72 = 0 

  ⇒ n = 9, -8 
Since n must be positive, so the only acceptable value of n is 9. 
 
           (b)     Given P(n,4) = 42P(n,2) 
  ⇒ n (n-1) (n-2) (n-3) = 42 n (n - 1)    (by using the definition of permutation) 
  ⇒ (n-2) (n-3) = 42  if n ≠0, n ≠1 
  ⇒ n

2
 - 5n + 6 = 42 

  ⇒ n
2
 - 5n - 36 = 0 

  ⇒ (n-9) (n+4) = 0 
  ⇒ n = 9, -4 
Since n must be positive, the only answer is n = 9 
 
EXERCISE: 
                     Prove that for all integers n ≥ 3 
P (n + 1, 3) - P(n, 3) = 3 P (n, 2) 
SOLUTION: 
          Suppose n is an integer greater than or equal to 3 
Now L.H.S = P (n + 1, 3) - P(n, 3) 
  = (n + 1) (n) (n-1) - n (n - 1)(n - 2) 
  = n (n - 1) [(n + 1) - (n - 2)] 
  = n (n - 1) [n + 1 - n + 2] 
  = 3 n (n - 1) 
 R.H.S = 3P (n, 2) 
  = 3⋅n(n-1) 
 
Thus L.H.S = R.H.S.  Hence the result. 
 

8!( ) (8,3) 8 7 6 336
(8 3)!

8! 8!( ) (8,8) 8! 40320 ( 0! 1)
(8 8)! 0!

8! 8 7!( ) (8,1) 8
(8 1)! 7!

( ) (6,8)  is not defined, since the second 
integer cannot exceed the first integer.

a P

b P as

c P

d P

= = ⋅ ⋅ =
−

= = = = =
−

⋅
= = =

−
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EXERCISE: 
              (a) How many ways can five of the letters of the word ALGORITHM be selected 
and written in a row? 
              (b) How many ways can five of the letters of the word ALGORITHM be 
selected and written in a row if the first two letters must be TH? 
 
SOLUTION: 
(a) The answer equals the number of 5-permutation of a set of 9 elements and  
 
 
 
(b)Since the first two letters must be TH hence we need to choose the remaining three 
letters out of the left 9 - 2 = 7 alphabets. 
Hence, the answer is the number of 3-permutations of a set of seven elements which is 
 
 
 
 
 
EXERCISE: 
                    Find the number of ways that a party of seven persons can arrange 
themselves in a row of seven chairs. 
 
SOLUTION: 
         The seven persons can arrange themselves in a row in P(7,7) ways. 
Now 
 
 
 
 
EXERCISE: 
                    A debating team consists of three boys and two girls. Find the number n of 
ways they can sit in a row if the boys and girls are each to sit together. 
 
SOLUTION: 
          There are two ways to distribute them according to sex: BBBGG or 
GGBBB.  
In each case  
the boys can sit in a row in P(3,3) = 3! = 6 ways, and 
the girls can sit in 
   P(2,2) = 2! = 2 ways and 
Every row consist of boy and girl  which is = 2!=2 
Thus  
   The total number of ways=n = 2 ⋅ 3! ⋅ 2! 
      = 2 ⋅6 ⋅2 = 24 
 
EXERCISE: 
                    Find the number n of ways that five large books, four medium sized book, 
and three small books can be placed on a shelf so that all books of the same size are 
together. 

9!(9,5) 9 8 7 6 5 15120
(9 5)!

P = = ⋅ ⋅ ⋅ ⋅ =
−

7!(7,3) 7 6 5 210
(7 3)!

P = = ⋅ ⋅ =
−

7! 7!(7,7) 7!
(7 7)! 0!

P = = =
−
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SOLUTION: 
          In each case, the large books can be arranged among themselves in  
P(5,5)= 5! ways, the medium sized books in P(4,4) = 4! ways, and the small books in 
P(3,3) = 3! ways. 
The three blocks of books can be arranged on the shelf in P(3,3) = 3! ways. 
Thus 
  n = 3!⋅5! ⋅4! ⋅3! 
     = 103680 
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Lecture No.31   Combinations 
 
K-COMBINATIONS 
K-SELECTIONS 
 
K-COMBINATIONS: 
With a k-combinations the order in which the elements are selected does not matter and 
the elements cannot repeat.  
 
DEFINITION: 
                        A k-combination of a set of n elements is a choice of k elements taken 
from the set of n elements such that the order of the elements does not matter and 
elements can’t be repeated.  
The symbol C(n, k) denotes the number of k-combinations that can be chosen from a set 
of n elements. 
 
NOTE: 
            k-combinations are also written          as  or   
 
REMARK: 
                  With k-combinations of a set of n elements, repetition of elements is not 
allowed, therefore, k must be less than or equal to n, i.e., k ≤ n. 
 
EXAMPLE: 
                    Let X = {a, b, c}. Then 2-combinations of the 3 elements of the set X are: 
{a, b}, {a, c}, and {b, c}. Hence C(3,2) = 3.  
 
EXERCISE: 
                     Let X = {a, b, c, d, e}.  
List all 3-combinations of the 5 elements of the set X, and hence find the value of C(5,3). 
 
SOLUTION: 
                     Then 3-combinations of the 5 elements of the set X are: 
{a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, 
{a, d, e}, {b, c, d}, {b, c, e}, {b, d, e}, {c, d, e} 
Hence C(5, 3) = 10  
 
PERMUTATIONS AND COMBINATIONS: 
 
EXAMPLE: 
                    Let X = {A, B, C, D}. 
The 3-combinations of X are: 
{A, B, C}, {A, B, D}, {A, C, D}, {B, C, D} 
Hence C(4, 3) = 4 
 
The 3-permutations of X can be obtained from 3-combinations of X as                      
follows. 
ABC, ACB, BAC, BCA, CAB, CBA 
ABD, ADB, BAD, BDA, DAB, DBA 
ACD, ADC, CAD, CDA, DAC, DCA 

n
kC n

k
⎛ ⎞
⎜ ⎟
⎝ ⎠
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BCD, BDC, CBD, CDB, DBC, DCB 
So that P(4, 3) = 24 = 4 · 6 = 4 · 3! 
Clearly P(4, 3) = C(4, 3) · 3! 
In general we have, P(n, k) = C(n, k) · k! 
In general we have, 
         P(n, k) = C(n, k) · k! 
 
or   
 
 
But we know that  
 
 
Hence, 
 
 
COMPUTING C(n, k) 
 
EXAMPLE: 
                    Compute C(9, 6). 
 
SOLUTION: 
 
 
 
 
 
 
 
 
SOME IMPORTANT RESULTS 
(a)   C(n, 0) = 1 
(b)   C(n, n) = 1  
(c)   C(n, 1) = n 
(d)   C(n, 2) = n(n-1)/2 
(e)   C(n, k) = C(n, n – k) 
(f)   C(n, k) + C(n, k + 1) = C(n + 1, k + 1) 
 
EXERCISE: 
                    A student is to answer eight out of ten questions on an exam. 
(a)  Find the number m of ways that the student can choose the eight questions 
(b)  Find the number m of ways that the student can choose the eight questions, if the first 
three questions are compulsory. 
 
SOLUTION: 
(a)   The eight questions can be answered in  m = C(10, 8) = 45 ways. 
(b)   The eight questions can be answered in  m = C(7, 5) = 21 ways. 
 
 

( , )( , )
!

P n kC n k
k

=

!( , )
( )!

nP n k
n k

=
−

!( , )
( )! !

nC n k
n k k

=
−

9!(9,6)
(9 6)!6!
9 8 7 6!

3! 6!
9 8 7
3 2

84

C =
−

⋅ ⋅ ⋅
=

⋅
⋅ ⋅

=
⋅

=
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EXERCISE: 
                    An examination paper consists of 5 questions in section A and 5 questions in 
section B. A total of 8 questions must be answered. In how many ways can a student 
select the questions if he is to answer at least 4 questions from section A.  
 
SOLUTION: 
There are two possibilities: 
(a)    The student answers 4 questions from section A and 4 questions from section B.The 
number of ways 8 questions can be answered taking 4 questions from section A and 4 
questions from section B are  
     C(5, 4) · C(5, 4) =5 · 5 = 25. 
(b)   The student answers 5 questions from section A and 3 questions from section B.The 
number of ways 8 questions can be answered taking 5 questions from section A and 3 
questions from section B are  
    C(5, 5) · C(5, 3) =1 · 10 = 10. 
Thus there will be a total of 25 + 10 = 35 choices. 
 
EXERCISE: 
                    A computer programming team has 14 members.  
(a) How many ways can a group of seven be chosen to work on a project? 
 
(b) Suppose eight team members are women and six are men 
    (i)  How many groups of seven can be chosen that contain four women and three men 
    (ii) How many groups of seven can be chosen that contain at least one man? 
    (iii)How many groups of seven can be chosen that contain at most three women? 
 
(c)  Suppose two team members refuse to work together on projects. How many groups of 
seven can be chosen to work on a project? 
 
(d) Suppose two team members insist on either working together or not at all on projects. 
How many groups of seven can be chosen to work on a project? 
 
(e) How many ways a group of 7 be chosen to work on a project? 
 
SOLUTION: 
(a)   Number of committees of 7  
 
 
 
  
 
           
 
 
(b) Suppose eight team members are women and six are men 
      (i) How many groups of seven can be chosen that contain four women and three men? 
 
 
SOLUTION: 
Number of groups of seven that contain four women and three men. 

14 !(14, 7)
(14 7)! 7 !

14 13 12 11 10 9 8
7 6 5 4 3 2

3432

C =
− ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
=

⋅ ⋅ ⋅ ⋅ ⋅
=
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(b) Suppose eight team members are women and six are men 
     (ii) How many groups of seven can be chosen that contain at least one man? 
 
SOLUTION: 
Total number of groups of seven 
 
 
 
 
 
 
Number of groups of seven that contain no men 
 
 
 
 
Hence, the number of groups of seven that contain at least one man 
C(14,7) – C(8, 7) = 3432 – 8 =3424 
 
(b)Suppose eight team members are women and six are men 
      (iii) How many groups of seven can be chosen that contain atmost three women? 
SOLUTION: 
  Number of groups of seven that contain no women  = 0 
  Number of groups of seven that contain one woman = C(8,1) ⋅ C(6,6) 
                   = 8 ⋅ 1 = 8 
   Number of groups of seven that contain two women = C(8,2) ⋅ C(6,5) 
                    = 28 ⋅ 6 = 168 
   Number of groups of seven that contain three women = C(8,3) ⋅ C(6,4) 
           = 56 ⋅ 15 = 840 
Hence the number of groups of seven that contain at most three women  
   = 0 + 8 + 168 + 840 = 1016 
 
(c)  Suppose two team members refuse to work together on projects. How many groups of 
seven can be chosen to work on a project? 
      
SOLUTION: 
                     Call the members who refuse to work together A and B. 
Number of groups of seven that contain neither A nor B  
 

8! 6!(8,4) (6,3)
(8 4)! 4! (6 3)! 3!
8 7 6 5 6 5 4

4! 3!
8 7 6 5 6 5 4
4 3 2 3 2

70 20 1400

C C⋅ = ⋅
− ⋅ − ⋅

⋅ ⋅ ⋅ ⋅ ⋅
= ⋅

⋅ ⋅ ⋅ ⋅ ⋅
= ⋅

⋅ ⋅ ⋅
= ⋅ =

14!(14,7)
(14 7)! 7!

14 13 12 11 10 9 8
7 6 5 4 3 2

3432

C =
− ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅
=

⋅ ⋅ ⋅ ⋅ ⋅
=

8
!7)!78(

!8)7,8(

=
⋅−

=C
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Number of groups of seven that contain A but not B 
                   C(12, 6) = 924       
Number of groups of seven that contain B but not A 
              C(12,6) = 924        
Hence the required number of groups are 
   C(12,7) + C(12,6) + C(12, 6)  
   =   792   +     924    +    924  
   = 2640 
 
(d)  Suppose two team members insist on either working together or not at all on projects.  
How many groups of seven can be chosen to work on a project? 
 
SOLUTION: 
                     Call the members who insist on working together C and D. 
Number of groups of seven containing neither C nor D 
  C(12, 7) = 792 
Number of groups of seven that contain both C and D 
  C(12, 5) = 792 
Hence the required number 
   = C(12, 7) + C(12, 5) 
   = 792 + 792 = 1584 
EXERCISE: 
(a) How many 16-bit strings contain exactly 9 1’s? 
(b)How many 16-bit strings contain at least one 1? 
 
SOLUTION: 
(a) 16-bit strings that contain exactly 9 1’s=    
  
(b) Total no. of 16-bit strings = 2

16
 

Hence number of 16-bit strings that contain at least one 1 
  2

16
 – 1 = 65536 – 1  

   = 65535 
 
K-SELECTIONS: 
k-selections are similar to k-combinations in that the order in which the elements are 
selected does not matter, but in this case repetitions can occur. 
 
DEFINITION: 
             A k-selection of a set of n elements is a choice of k elements taken from a 
set of n elements such that the order of elements does not matter and elements can be 
repeated.  
 
 
 
REMARK:  
1.   k-selections are also called k-combinations with repetition allowed or multisets of size 
k. 

12!(12,7)
(12 7)! 7!
792

C =
− ⋅

=

16!(16,9) 11440
(16 9)!9!

C = =
−
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2.   With k-selections of a set of n elements repetition of elements is allowed. Therefore k 
need not to be less than or equal to n. 
 
THEOREM: 
The number of k-selections that can be selected from a set of n elements is   
   

  C(k+n−1, k) or 
k + n -1

C
k

 

EXERCISE: 
A camera shop stocks ten different types of batteries.  
      (a)    How many ways can a total inventory of 30 batteries be distributed among the    
               ten different types? 
      (b)   Assuming that one of the types of batteries is A76, how many ways can a total     
              inventory of 30 batteries be distributed among the 10 different types if the     
              inventory must include at least four A76 batteries? 
 
SOLUTION: 
(a) k = 30 
 n = 10 
The required number is 
 C(30 + 10 – 1, 30) = C(39, 30) 
   
    =  
   
    = 211915132 
(b) k = 26 
 n = 10 
The required number is 
    C(26 + 10 – 1, 26) = C(35, 26) 
     
    =  
 
    = 70607460 
 
WHICH FORMULA TO USE? 
 

  ORDER    
MATTERS 

ORDER DOES   
NOT MATTER 

REPETITION 
ALLOWED 

k-sample 
nk 

k-selection 
C(n+k-1, k) 

REPETITION 
NOT  
ALLOWED 

k-permutation 
P(n, k) 

k-combination 
C(n, k) 

 

39!
(39 30)!30!−

35!
(35 26)!26!−
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Lecture No.32   K-Combinations 
 
 
ORDERED AND UNORDERED PARTITIONS 
PERMUTATIONS WITH REPETITIONS 
 
K-SELECTIONS: 
k-selections are similar to k-combinations in that the order in which the elements are 
selected does not matter, but in this case repetitions can occur. 
 
DEFINITION: 
            A k-selection of a set of n elements is a choice of k elements taken from a 
set of n elements such that the order of elements does not matter and elements can be 
repeated.  
 
REMARK:  
         1. k-selections are also called k-combinations with repetition allowed or multisets of  
             size k. 
        2.  With k-selections of a set of n elements repetition of elements is allowed.      
             Therefore k need not to be less than or equal to n. 
 
THEOREM: 
The number of k-selections that can be selected from a set of n elements is   
   

  C(k+n−1, k) or 
k+n-1

k
c  

 
EXERCISE: 
                   A camera shop stocks ten different types of batteries.  
(a) How many ways can a total inventory of 30 batteries be distributed among the ten 
different types? 
(b) Assuming that one of the types of batteries is A76, how many ways can a total 
inventory of 30 batteries be distributed among the 10 different types if the inventory must 
include at least four A76 batteries? 
 
SOLUTION: 
(a) k = 30 
 n = 10 
 
The required number is 
 C(30 + 10 – 1, 30)= C(39, 30) 
   
        =  
      
                                        = 211915132 
 
 
(b) k = 26 
 n = 10 
The required number is 

39!
(39 30)!30!−
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    C(26 + 10 – 1, 26) = C(35, 26) 
     
    =  
 
     
                                             = 70607460 
 
WHICH FORMULA TO USE? 
 

  ORDER    
MATTERS 

ORDER DOES   
NOT MATTER 

REPETITION 
ALLOWED 

k-sample 
nk 

k-selection 
C(n+k-1, k) 

REPETITION NOT  
ALLOWED 

k-permutation 
P(n, k) 

k-combination 
C(n, k) 

 
ORDERED AND UNORDERED PARTITIONS: 
An unordered partition of a finite set S is a collection [A

1
, A

2
, …, A

k
] of disjoint 

(nonempty) subsets of S (called cells) whose union is S. 
The partition is ordered if the order of the cells in the list counts. 
 
EXAMPLE: 
                    Let S = {1, 2, 3, …, 7} 
The collections 
 P

1
 = [{1,2}, {3,4,5}, {6,7}] 

And P
2
 = [{6,7}, {3,4,5}, {1,2}] 

determine the same partition of S but are distinct ordered partitions. 
 
EXAMPLE: 
                    Suppose a box B contains seven marbles numbered 1 through 7. Find the 
number m of ways of drawing from B firstly two marbles, then three marbles and lastly 
the remaining two marbles. 
 
SOLUTION: 
                    The number of ways of drawing 2 marbles from 7 = C(7, 2) 
Following this, there are five marbles left in B. 
The number of ways of drawing 3 marbles from 5 = C(5, 3) 
Finally, there are two marbles left in B. 
The number of way of drawing 2 marbles from 2 = C(2, 2) 
 
Thus 
 
 
   
  
                                                                                                                                            
   

35!
(35 26)!26!−

7 5 2
2 3 2
7! 5! 2!

2!5! 2!3! 2!0!
7! 210

2!3!2!

m ⎛ ⎞⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠⎝ ⎠

= ⋅ ⋅

= =
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THEOREM: 
Let S contain n elements and let n

1
, n

2
, …, n

k
 be positive integers with 

    n
1
+n

2
+…+n

k
 = n.  

 
Then there exist  
 
different ordered partitions of S of the form [A

1
, A

2
, …, A

k
], where  

A
1
 contains n

1
 elements  

A
2
 contains n

2
 elements 

A
3
 contains n

3
 elements     

 ………………………..             
A

k
 contains n

k
 elements 

 
REMARK: 
                  To find the number of unordered partitions, we have to count the ordered 
partitions and then divide it by suitable number to erase the order in partitions. 
 
EXERCISE: 
                    Find the number m of ways that nine toys can be divided among four 
children if the youngest child is to receive three toys and each of the others two toys. 
 
SOLUTION: 
                     We find the number m of ordered partitions of the nine toys into four cells 
containing 3, 2, 2 and 2 toys respectively. 
Hence 
 
 
 
EXERCISE: 
                     How many ways can 12 students be divided into 3 groups with 4 students in 
each group so that  
             (i) one group studies English, one History and one Mathematics. 
             (ii) all the groups study Mathematics. 
 
SOLUTION: 
(i) Since each group studies a different subject, so we seek the number of ordered 
partitions of the 12 students into cells containing 4 students each. Hence there are  
 
                     such partitions 
 
(ii) When all the groups study the same subject, then order doesn’t matter.  
Now each partition {G1, G2, G3} of the students can be arranged in 3! ways as an 
ordered partition, hence there are 
 
              
 
unordered partitions. 

1 2 3

!
! ! ! !k

n
n n n n"

12! 34,650
4!4!4!

=

12! 1
4!4!4! 3!

×

9!
3!2!2!2!
2520

m =

=
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EXERCISE: 
                     How many ways can 8 students be divided into two teams containing 
(i) five and three students respectively. 
(ii) four students each. 
 
SOLUTION: 
(i) The two teams (cells) contain different number of students; so the number of 
unordered partitions equals the number of ordered partitions, which is 
 
  
 
(ii) Since the teams are not labeled, so we have to find the number of unordered partitions 
of 8 students in groups of 4. 
Firstly, note, there are                             ordered partitions into two cells containing four 
students each. 
Since each unordered partition determine 2! = 2 ordered partitions, there are 
  
 
unordered partitions 
 
EXERCISE: 
                     Find the number m of ways that a class X with ten students can be partitions 
into four teams A

1
, A

2
, B

1
 and B

2
 where A

1
 and A

2
 contain two students each and B

1
 and 

B
2
 contain three students each. 

 
SOLUTION: 
                      There are                         ordered partitions of X into four cells  
 
containing 2, 2, 3 and 3 students respectively. 
However, each unordered partition [A

1
, A

2
, B

1
, B

2
] of X determines 

 2!⋅2! = 4 ordered partitions of X.  
Thus,  
 
  
EXERCISE: 
                    Suppose 20 people are divided in 6 (numbered) committees so that 3 people 
each serve on committee C

1
 and C

2
, 4 people each on committees C

3
 and C

4
, 2 people on 

committee C
5
 and 4 people on committee C

6
. How many possible arrangements are there? 

SOLUTION: 
                    We are asked to count labeled group - the committee numbers labeled the 
group.So this is a problem of ordered partition. Now, the number of ordered partitions of 
20 people into the specified committees is 
 
 
 
EXERCISE: 
                     If 20 people are divided into teams of size 3, 3, 4, 4, 2, 4, find the number of 
possible arrangements. 

8! 56
5!3!

=

8! 70
4!4!

=

70 35
2

=

25,200 6300
4

m = =

20! 2444321880000
3!3!4!4!2!4!

=

10! 25,200
2!2!3!3!

=
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SOLUTION: 
                     Here, we are asked to count unlabeled groups. Accordingly, this is the case 
of ordered partitions. 
Now number of ordered partitions  
 
  
 
GENERALIZED PERMUTATION or PERMUTATIONS WITH REPETITIONS: 
The number of permutations of n elements of which n

1
 are alike, n

2
 are alike, …, n

k
 are 

alike is 
 
 
  
REMARK: 
The number           is often called a multinomial coefficient, and is denoted by the 
symbol. 
 
 
  
 
EXERCISE: 
                    Find the number of distinct permutations that can be formed using the letters 
of the word “BENZENE”. 
 
SOLUTION: 
                     The word “BENZENE” contains seven letters of which three are alike (the 3 
E’s) and two are alike (the 2 N’s) 
Hence, the number of distinct permutations are: 
 
EXERCISE: 
                     How many different signals each consisting of six flags hung in a vertical 
line, can be formed from four identical red flags and two identical blue flags? 
SOLUTION: 
                     We seek the number of permutations of 6 elements of which 4 are alike and 
2 are alike. 
 
There are                              different signals. 
 
EXERCISE: 
(i)   Find the number of “words” that can be formed of the letters of the word ELEVEN. 
(ii)  Find, if the words are to begin with L. 
(iii) Find, if the words are to begin and end in E. 
(iv) Find, if the words are to begin with E and end in N. 
 
SOLUTION: 
         (i)There are six letters of which three are E; hence required  number of “words” 
are 
  

20! 1
3!3!4!4!2!4! 3!2!
203693490000

= ×

=

1 2

!
! ! !k

n
n n n"

1 2

!
! ! !k

n
n n n"

1 2, , , k

n
n n n

⎛ ⎞
⎜ ⎟
⎝ ⎠"

7! 420
3!2!

=

6! 15
4!2!

=

6! 120
3!

=
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        (ii)  If the first letter is L, then there are five positions left to fill where three are E; 
hence required number of words are 
  
       (iii)   If the words are to begin and end in E, then there are only four positions to fill 
with four distinct letters. 
 
Hence required number of words = 4! = 24 
 
      (iv)  If the words are to begin with E and end in N, then there are four positions left to 
fill where two are E. 
 
Hence required number of words =  
 
EXERCISE: 
           (i)Find the number of permutations that can be formed from all the letters of the 
word BASEBALL 
          (ii)Find, if the two B’s are to be next to each other. 
          (iii)Find, if the words are to begin and end in a vowel. 
 
SOLUTION: 
            (i)There are eight letter of which two are B, two are A, and  two are L. Thus, 
 
Number of permutations  
 
 
 
           (ii)Consider the two B’s as one letter. Then there are seven  letters of which two 
are A and two are L. Hence,  
Number of permutations  
  
 
          (iii)There are three possibilities, the words begin and end in A, the words begin in 
A and end in E, or the words begin in E and end in A. 
In each case there are six positions left to fill where two are B and two are L. Hence, 
  
Number of permutations    
 
 

5! 20
3!

=

4! 12
2!

=

8!
2!2!2!
5040

=

=

7!
2!2!
1260

=

=

6!3 540
2!2!

= =
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Lecture No.33   Tree Diagram 
TREE DIAGRAM 
INCLUSION - EXCLUSION PRINCIPLE 
 
TREE DIAGRAM: 
A tree diagram is a useful tool to list all the logical possibilities of a sequence of events 
where each event can occur in a finite number of ways.     
 
A tree consists of a root, a number of branches leaving the root, and possible additional 
branches leaving the end points of other branches. To use trees in counting problems, we 
use a branch to represent each possible choice. The possible outcomes are represented by 
the leaves (end points of branches). 
 
A tree is normally constructed from left to right. 
 

Root
Bran

ch

Branch

Leave

Leave

Leave
A TREE STRUCTURE  

  
EXAMPLE: 
                    Find the permutations of {a, b, c} 
 
SOLUTION: 
                    The number of permutations of 3 elements is 
 
  
 
We find the six permutations by constructing the appropriate tree diagram. The six 
permutations are listed on the right of the diagram. 
 

a

b

c

b c

c ba c

c a
a b

b a

abc

acb
bac

bcacab

cba
 

EXERCISE: 
                     Find the product set A × B × C, where  

3!(3,3) 3! 6
(3 3)!

P = = =
−
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                     A = {1,2}, B = {a,b,c}, and C = {3,4}  by constructing the appropriate tree 
diagram. 
 
SOLUTION: 
                     The required diagram is shown next. Each path from the beginning of the 
tree to the end point designates an element of A × B × C which is listed to the right of the 
tree. 

a

b

c

a

b

c

1

2

3

4
3

4
3

4
3

4
3

4
3

4

(1,a,3)

(1,a,4)
(1,b,3)

(1,b,4)
(1,c,3)

(1,c,4)
(2,a,3)

(2,a,4)
(2,b,3)

(2,b,4)
(2,c,3)

(2,c,4)  
 
EXERCISE: 
                   Teams A and B play in a tournament. The team that first wins two games 
wins the tournament. Find the number of possible ways in which the tournament can 
occur. 
SOLUTION: We construct the appropriate tree diagram. 
                       
 

A

B

A

B

A

B

A

B
A

B
 

 
The tournament can occur in 6 ways: AA, ABA, ABB, BAA, BAB, BB 
 
EXERCISE: 
                     How many bit strings of length four do not have two consecutive 1’s? 
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SOLUTION: 
                      The following tree diagrams displays all bit strings of length four without 
two consecutive 1’s. Clearly, there are 8 bit strings. 

0

0

0

0

1

1

1

1

0

0

0

0

0

0

0

1

1

0000

0001

0010
0100

0101
1000

1001
10101st 

bit
2nd 
bit 3rd

bit
4th 
bit

1

 
EXERCISE: 
                     Three officers, a president, a treasurer, and a secretary are to be chosen from 
among four possible: A, B, C and D. Suppose that A cannot be president and either C or 
D must be secretary. 
How many ways can the officers be chosen? 
 
 
SOLUTION:  
                       We construct the possibility tree to see all the possible choices. 
 
From the tree given below, see that there are only eight ways possible to choose  
the offices under given conditions. 
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start

B

C

D

A

C

C

D
A
B
A

BPresident
selected

Treasurer 
selected

Secretary
selected

D
D
C
D

D
C

C

 
 
THE INCLUSION-EXCLUSION PRINCIPLE: 
 
             1.  If A and B are disjoint finite sets, then  
                            n(A∪B) = n(A) + n(B) 
             2.  If A and B are finite sets, then 
                            n(A∪B) = n(A) + n(B) - n(A∩B) 
 
REMARK: 
                   Statement 1 follows from the sum rule 
                   Statement 2 follows from the diagram 
 

A B
A ∩ B

 
 
 
In counting the elements of A ∪ B, we count the elements in A and count the elements in 
B. There are n(A) in A and n(B) in B. However, the elements in A ∩ B were counted 
twice. Thus we subtract n(A ∩ B) from n(A) + n(B) to get n(A ∪ B). 
Hence, 
 n(A∪B) = n(A) + n(B) - n(A∩B) 
 
EXAMPLE: 
                  There are 15 girls students and 25 boys students in a class. How many students 
are there in total? 
 
SOLUTION: 
                     Let G be the set of girl students and B be the set of boy students. 
Then  n(G) = 15; n(B) = 25 
and  n(G ∪ B) = ? 
Since, the sets of boy and girl students are disjoint; here total number of students are 
  n(G ∪B)  = n(G) + n(B) 
    = 15 + 25 
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    = 40 
 
EXERCISE: 
                    Among 200 people, 150 either swim or jog or both. If 85 swim and 60 swim 
and jog, how many jog? 
 
SOLUTION: 
                     Let U be the set of people considered. Suppose S be the set of people who 
swim and J be the set of people who jog. Then given n(U) = 200; n(S ∪ J) = 150 
 n(S) = 85; n(S ∩ J) = 60      and   n(J) = ? 
By inclusion - exclusion principle,  
                 n(S ∪ J) = n(S) + n(J) - n(S ∩J) 
           150   =   85  +  n(J) -  60              
⇒             n(J) = 150 - 85 + 60    
         = 125 
Hence 125 people jog. 
 
EXERCISE: 
                    Suppose A and B are finite sets. Show that 
n(A\B) = n(A) - n(A ∩ B)SOLUTION: 
                      Set A may be written as the union of two disjoint sets A\B and A∩B. 

A B

A\B A ∩ B B\A
 

 
i.e.,   A = (A\B) ∪(A∩B) 
Hence, by inclusion exclusion principle (for disjoint sets) 
     n(A) = n(A\B) + n(A ∩ B) 
⇒ n(A\B) = n(A) - n(A ∩ B) 
 
REMARK: 
 n(A′) = n(U\A)  where U is the universal set 
  = n(U) - n(U ∩ A) 
  = n(U) - n(A) 
 
 
EXERCISE: 
                     Let A and B be subsets of U with n(A) = 10, n(B) = 15, n(A′)=12, and 
n(A∩B) = 8. Find n(A∪B′). 
 
 
 



33-Tree diagram      VU                       
 
 

 
© Copyright Virtual University of Pakistan 

243

SOLUTION: 
 

A B
U

 
 
From the diagram A ∪ B′ = U \ (B \ A) 
Hence 
 n(A ∪ B′) = n(U \ (B\A)) 
        = n(U) - n(B\A) …………………(1)  
Now U = A ∪ A′ where A & A′ are disjoint sets 
⇒ n (U) = n(A) + n(A′)        
                        =   10  +  12         
                        =   22          
Also         
           n(B\A) = n(B) - n(A∩B)    
            =   15  -   8 
            = 7 
Substituting values in (1) we get 
     n (A ∪ B′ ) = n(U) - n(B\A)        
                        =   22  -   7        
             = 15  Ans. 
 
EXERCISE: 
                     Let A and B are subset of U with n(U) = 100, n(A) = 50, n(B)= 60, and 
n((A∪B)′) = 20. Find n(A∩B) 
 
SOLUTION: 
                      Since  (A ∪ B)′ = U \ (A ∪ B) 
⇒               n ((A ∪ B)′)  = n (U) - n (A ∪ B) 
⇒            20         = 100 - n (A ∪ B) 
⇒  n (A ∪ B) = 100 - 20 = 80 
Now, by inclusion - exclusion principle 
  n (A ∪ B) = n (A) + n (B) - n (A ∩ B) 
⇒  80 = 50 + 60 - n (A ∩ B) 
⇒  n (A ∩ B) = 50 + 60 - 80 = 30 
EXERCISE: 
                     Suppose 18 people read English newspaper (E) or Urdu newspaper (U) or 
both. Given 5 people read only English newspaper and 7 read both, find the number “r” of 
people who read only Urdu newspaper. 
 
SOLUTION: 
                      Given n (E ∪U) = 18 n (E\U) = 5, n (E ∩ U) = 7     
                   r = n (U \ E) = ?      
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From the diagram  

E\U

E U

E ∩ U U\E  
E ∪ U = (E\U) ∪  (E ∩ U) ∪ (U\E)           
and the union is disjoint. Therefore,                
 n(E ∪ U) = n(E\U) + n(E ∩ U) + n(U\E)                       
⇒       18  = 5 + 7 + r             
 ⇒        r   = 18 - 5 – 7                         
⇒   r   = 6  Ans. 
 
EXERCISE: 
                    Fifty people are interviewed about their food preferences. 20 of them like 
Chinese food, 32 like fast food, and 12 like neither Chinese nor fast food. How many like 
Chinese but not fast food? 
 
SOLUTION: 
                     Let U denote the set of people interviewed and C and F denotes the sets of 
people who like Chinese food and fast food respectively. 
Now given 
 n (U) = 50,  n (C) = 20 
 n (F) = 32,  n ((C∪F′)) = 12 
To find  n (C∩F′) = n (C\F) 
Since n ((CUF)′)= n (U) - n (C∪F) 
⇒            12  = 50 - n (C ∪ F) 
⇒  n (C ∪ F)= 50 - 12 = 38 
 
Next 
⇒  n (C ∪ F)= n (C\F) + n (F) 
⇒           38  = n (C\F) + 32 
⇒  n (C\F)   = 38 - 32 = 6 
 

C F

C\F
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Lecture No.34   Inclusion-Exclusion Principle 
 
INCLUSION-EXCLUSION PRINCIPLE 
PIGEONHOLE PRINCIPLE 
 
EXERCISE: 
   (a) How many integers from 1 through 1000 are multiples of 3 or multiples of 5? 
   (b) How many integers from 1 through 1000 are neither multiples of 3 nor multiples of 
5? 
SOLUTION: 
        (a)   Let A and B denotes the set of integers from 1 through 1000 that are multiples 
of 3 and 5 respectively.  
Then A ∩ B contains integers that are multiples of 3 and 5 both i.e., multiples of 15. 
Now 
 
                                                and  
 
 
and 
 
 
 
Hence by the inclusion - exclusion principle 
 n(A∪B) = n(A) + n(B) - n(A∩B) 
    = 333 + 200 - 66 
    = 467 
 
         (b)   The set (A ∪ B) contains those integers that are either multiples of 3 or 
multiples of  5. Now  
 n((A ∪ B)′) = n(U) - n(A ∪ B) 
          = 1000 - 467 
         = 533 
where the universal set U contain integers 1 through 1000. 
 
INCLUSION-EXCLUSION PRINCIPLE FOR 3 AND 4 SETS: 
 
If A, B, C and D are finite sets, then 
1. n(A∪B ∪ C)= n(A) + n(B) + n(C)- n(A ∩ B) - n(B ∩ C) - n(A ∩ C) + n(A ∩ B ∩ C) 
 
2.n(A∪B ∪ C ∪D) = n(A) + n(B) + n(C) + n(D)- n(A∩B) - n(A∩C) - n(A∩D) 
                                       - n(B∩C) - n(B ∩D) - n(C ∩D)+ n(A ∩ B ∩ C) + n(A ∩B ∩D) 
      + n(A ∩ C ∩ D) + n(B ∩C∩ D) - n(A ∩ B ∩ C ∩D) 
 
EXERCISE: 
                    A survey of 100 college students gave the following data: 
8 owned a car (C) 
20 owned a motorcycle (M) 
48 owned a bicycle (B) 
38 owned neither a car nor a motorcycle nor a bicycle 
No student who owned a car, owned a motorcycle 

1000
( ) 333

3
n A

⎡ ⎤
= =⎢ ⎥

⎣ ⎦

1000
( ) 200

5
n B

⎡ ⎤
= =⎢ ⎥

⎣ ⎦

1000
( ) 66

15
n A B ⎡ ⎤

∩ = =⎢ ⎥
⎣ ⎦
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How many students owned a bicycle and either a car or a motorcycle? 
 
SOLUTION: 

C M

B

U

 
 
No. of elements in the shaded region to be determined 
Let U represents the universal set of 100 college students. Now given that  
n (U) = 100;  n (C) = 8 
n (M) = 20;  n (B) = 48 
n((C∪M ∪B)′) = 38; n (C ∩M) = 0 
and n (B ∩C) + n (B ∩ M) = ? 
Firstly note n((C ∪ M ∪ B)′) = n (U) - n (C ∪ M ∪ B) 
⇒          38 = 100 - n (C ∪ M ∪ B) 
⇒          n (C ∪ M ∪ B)  = 100 - 38 = 62 
Now by inclusion - exclusion principle 
n (C ∪ M ∪ B) = n(C) + n(M) + n (B) - n (C∩M) - n(C ∩B)  - n (M ∩ B)  
                                                                                          + n (C ∩ M ∩ B) 
⇒               62  = 8 + 20 + 48 - 0 - n (C ∩ B) - n (M ∩ B) -0 
                   (∴ n (C ∩ B) = 0) 
⇒ n (C ∩ B) + n (M ∩ B) = 8 + 20 + 48 - 62 
          = 76 - 62 
          = 14 
Hence, there are 14 students, who owned a bicycle and either a car or a motorcycle. 
 
REVISION OF FUNCTIONS: 
 
 
 
 
 
  
 
 
 
 
 
 
Clearly the above relation is not a function because 2 does not have any image under this 
relation. Note that if want to made it relation we have to map the 2 into some element of 
B which is also the image of some element of A.  
 
Now, 
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The above relation is a function because it satisfy the conditions of functions(as each 
element of 1st set have the images in 2nd set). The following is a function.  
 
 
 
 
 
 
 
 

 
The above relation is a function because it satisfy the conditions of functions(as each 
element of 1st set have the images in 2nd set). Therefore the above is also a function.  
 

PIGEONHOLE PRINCIPLE 
 

A function from a set of k + 1 or more elements to a set of k elements must have at least 
two elements in the domain that have the same image in the co-domain.  
  
If k + 1 or more pigeons fly into k pigeonholes then at least one pigeonhole must contain 
two or more pigeons.  
 
EXAMPLES: 
        1. Among any group of 367 people, there must be at least two with the same 
birthday, because there are only 366 possible birthdays.   
        2. In any set of 27 English words, there must be at least two that begin with the same 
letter, since there are 26 letters in the English alphabet.  
 
EXERCISE: 
                    What is the minimum number of students in a class to be sure that two of 
them are born in the same month? 
 
SOLUTION: 
                      There are 12 (= n) months in a year. The pigeonhole principle shows that 
among any 13 (= n + 1) or more students there must be at least two students who are born 
in the same month.  
 
EXERCISE: 
                     Given any set of seven integers, must there be two that have the same 
remainder when divided by 6?  
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SOLUTION: 
                      The set of possible remainders that can be obtained when an integer is 
divided by six is {0, 1, 2, 3, 4, 5}. This set has 6 elements. Thus by the pigeonhole 
principle if 7 = 6 + 1 integers are each divided by six, then at least two of them must have 
the same remainder.  
 
EXERCISE: 
                     How many integers from 1 through 100 must you pick in order to be sure of 
getting one that is divisible by 5? 
 
SOLUTION: 
                     There are 20 integers from 1 through 100 that are divisible by 5. Hence there 
are eighty integers from 1 through 100 that are not divisible by 5. Thus by the pigeonhole 
principle 81 = 80 + 1 integers from 1 though 100 must be picked in order to be sure of 
getting one that is divisible by 5.  
 
EXERCISE: 
                     Let A = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. Suppose six integers are chosen from 
A. Must there be two integers whose sum is 11. 
 
SOLUTION: 
                     The set A can be partitioned into five subsets: 
{1, 10}, {2, 9}, {3, 8}, {4, 7}, and {5, 6} 
each consisting of two integers whose sum is 11.  
These 5 subsets can be considered as 5 pigeonholes.             
If 6 = (5 + 1) integers are selected from A, then by the pigeonhole principle at least two 
must be from one of the five subsets. But then the sum of these two integers is 11.  
 
GENERALIZED PIGEONHOLE PRINCIPLE: 
A function from a set of n⋅k + 1 or more elements to a set of n elements must have at least 
k + 1 elements in the domain that have the same image in the co-domain.  
If n ⋅ k + 1 or more pigeons fly into n pigeonholes then at least one pigeonhole must 
contain k + 1 or more pigeons.   
 
EXERCISE: 
                    Suppose a laundry bag contains many red, white, and blue socks. Find the 
minimum number of socks that one needs to choose in order to get two pairs (four socks) 
of the same colour.  
SOLUTION: 
                     Here there are n = 3 colours (pigeonholes) and k + 1 = 4 or k = 3. Thus 
among any n⋅k + 1 = 3⋅3 + 1 = 10 socks (pigeons), at least four have the same colour.   
 
DEFINITION: 
1.  Given any real number x, the floor of x, denoted ⎣x⎦, is the largest integer smaller than 
or equal to x. 
 
2.  Given any real number x, the ceiling of x, denoted ⎡x⎤, is the smallest integer greater 
than or equal to x. 
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EXAMPLE: 
                    Compute ⎣x⎦ and ⎡x⎤ for each of the following values of x.  
a.    25/4 b.    0.999 c.    –2.01 
 
SOLUTION: 
a. ⎣25/4⎦ = ⎣6 + ¼⎦ = 6 
 ⎡25/4⎤ = ⎡6 + ¼⎤ = 6 + 1 = 7 
 
b. ⎣0.999⎦ = ⎣0 + 0.999⎦ = 0 
 ⎡0.999⎤ = ⎡0 + 0.999⎤ = 0 + 1 = 1 
 
c. ⎣–2.01⎦ = ⎣–3 + 0.99⎦ = –3 
 ⎡–2.01⎤ = ⎡–3+ 0.999⎤ = –3 + 1 = –2 
 
EXERCISE: 
                    What is the smallest integer N such that  
a. ⎡N/7⎤ = 5 b. ⎡N/9⎤ = 6 
 
SOLUTION: 
a.  N = 7 ⋅ (5 – 1) + 1 = 7 ⋅ 4 + 1 = 29 
b.  N = 9 ⋅ (6 – 1) + 1 = 9 ⋅ 5 + 1 = 46 
 
PIGEONHOLE PRINCIPLE: 
If N pigeons fly into k pigeonholes then at least one pigeonhole must contain ⎡N /k⎤ or 
more pigeons. 
  
EXAMPLE: 
                   Among 100 people there are at least ⎡100/12⎤ = ⎡8 + 1/3⎤ = 9 who were born 
in the same month.  
 
EXERCISE: 
                    What is the minimum number of students required in a Discrete Mathematics 
class to be sure that at least six will receive the same grade, if there are five possible  
grades, A, B, C, D, and F. 
SOLUTION: 
                     The minimum number of students needed to guarantee that at least six 
students receive the same grade is the smallest integer N such that ⎡N/5⎤ = 6.  
 The smallest such integer is N = 5(6-1)+1=5 ⋅ 5 + 1 = 26.  
 
Thus 26 is the minimum number of students needed to be sure that at least 6 students will 
receive the same grades.  
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Lecture No.35   Probability 
 
INTRODUCTION TO PROBABILITY 
 
INTRODUCTION: 
                                Combinatorics and probability theory share common origins. The 
theory of probability was first developed in the seventeenth century when certain 
gambling games were analyzed by the French mathematician Blaise Pascal. It was in 
these studies that Pascal discovered various properties of the binomial coefficients. In the 
eighteenth century, the French mathematician Laplace, who also studied gambling, gave 
definition of the probability as the number of successful outcomes divided by the number 
of total outcomes. 
 
DEFINITIONS: 
 
An experiment is a procedure that yields a given set of possible outcomes.  
 
The sample space of the experiment is the set of possible outcomes. 
 
An event is a subset of the sample space. 
 
EXAMPLE: 
                    When a die is tossed the sample space S of the experiment have the following 
six outcomes.  S = {1, 2, 3, 4, 5, 6} 
      Let E1 be the event that a 6 occurs,    
          E2 be the event that an even number occurs,     
        E3 be the event that an odd number occurs,    
      E4 be the event that a prime number occurs,     
    E5 be the event that a number less than 5 occurs, and 
  E6 be the event that a number greater than 6 occurs.          
Then 
E1 = {6}  E2 = {2, 4, 6} 
E3 = {1, 3, 5}  E4 = {2, 3, 5} 
E5 = {1, 2, 3, 4} E6 = Ф 
 
EXAMPLE: 
                   When a pair of dice is tossed, the sample space S of the experiment  has the 
following thirty-six outcomes 
S  =  {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6) 
          (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6) 
          (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6) 
         (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6) 
        (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6) 
       (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} 
or more compactly, 
{11, 12, 13, 14, 15, 16, 21, 22, 23, 24, 25, 26,  
  31, 32, 33, 34, 35, 36, 41, 42, 43, 44, 45, 46,  
  51, 52, 53, 54, 55, 56, 61, 62, 63, 64, 65, 66} 
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Let E be the event in which the sum of the numbers is ten.  
Then 
E = {(4, 6), (5, 5), (6, 4)} 
 
DEFINITION: 
                     Let S be a finite sample space such that all the outcomes are equally likely to 
occur.   
The probability of an event E, which is a subset of sample space S, is 

 
REMARK: 
Since φ E S⊆ ⊆  therefore, 0 ≤  n(E) ≤ n(S). It follows that the probability of an event is 
always between 0 and 1.                                   (   Since n(φ ) = 0,  n(S) = 1 ) 

 
EXAMPLE: 
                    What is the probability of getting a number greater than 4 when a dice is 
tossed?  
 
SOLUTION: 
                     When a dice is rolled its sample space is  S={1,2,3,4,5,6} 
Let E be the event that a number greater than 4 occurs. Then E = {5, 6} 
Hence, 

 
EXAMPLE: 
                    What is the probability of getting a total of eight or nine when a pair of dice 
is tossed? 
SOLUTION:  
                     When a pair of dice is tossed,its sample space S has the 36 outcomes which 
are as fellows: 
 
 S  =  {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6) 
          (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6) 
          (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6) 
         (4, 1), (4, 2), (4, 3), (4, 4), (4, 5), (4, 6) 
        (5, 1), (5, 2), (5, 3), (5, 4), (5, 5), (5, 6) 
       (6, 1), (6, 2), (6, 3), (6, 4), (6, 5), (6, 6)} 
Let E be the event that the sum of the numbers is eight or nine. Then 
E = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (3, 6), (4, 5), (5, 4), (6, 3)} 
Hence, 

 
 

)(
)(

in  outcomes  totalofnumbr  the
in  outcomes ofnumber  the)(

Sn
En

S
EEP ==

3
1

6
2

)(
)()( ===

Sn
EnEP

4
1

36
9

)(
)()( ===

Sn
EnEP



35-Probability     VU                       

 
© Copyright Virtual University of Pakistan 

252

EXAMPLE: 
                    An urn contains four red and five blue balls. What is the probability that a 
ball chosen from the urn is blue? 
 
SOLUTION: 
                     Since there are four red balls and five blue balls so if we take out one ball 
from the urn then there is possibility that it may be one of from four red and one of from 
five blue balls hence there are total of nine possibilities. Thus we have  
The total number of possible outcomes = 4 + 5 = 9 
Now our favourable event is that we get the blue ball when we choose a ball from the urn. 
So we have   
               The total number of favorable outcomes = 5 
Now we have Favorable outcomes 5 and our sample space has total outcomes 9 .Thus we 
have  
               The probability that a ball chosen = 5/9 
 
EXERCISE: 
                    Two cards are drawn at random from an ordinary pack of 52 cards. Find the 
probability p that (i) both are spades, (ii) one is a spade and one is a heart. 
 
SOLUTION: 
 

There are 52
1326

2
⎛ ⎞

=⎜ ⎟
⎝ ⎠

   ways to draw 2 cards from 52 card 

 

(i)     There are 
13

78
2

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 ways to draw 2 spades from 13 spades (as spades are 13 in 52 

cards); hence 

 

ii)    Since there are 13 spades and 13 hearts, there are 13 13
13.13 169

1 1
⎛ ⎞⎛ ⎞

= =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 ways to 

draw a spade and a heart; hence 169 13
1326 102

p = =  

EXAMPLE: 
                    In a lottery, players win the first prize when they pick three digits that match, 
in the correct order, three digits kept secret. A second prize is won if only two digits 
match. What is the probability of winning (a) the first prize, (b) the second prize? 
 
SOLUTION: 
                      Using the product rule, there are 10

3
 = 1000 ways to choose three digits. 

 
     (a) There is only one way to choose all three digits correctly. Hence the probability    
           that a player wins the first prize is 1/1000 = 0.001.  
 
    (b) There are three possible cases: 

17
1

1326
78

drawn becan  cards 2  waysofnumber 
drawn becan  spades 2  waysofnumber 

===p
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           (i)The first digit is incorrect and the other two digits are correct 
           (ii)The second digit is incorrect and the other two digits are correct 
          (iii)The thirds digit is incorrect and the other digits are correct 
 
To count the number of successes with the first digit incorrect, note that there are nine 
choices for the first digit to be incorrect, and one each for the other two digits to be 
correct. Hence, there are nine ways to choose three digits where the first digit is incorrect, 
but the other two are correct. Similarly, there are nine ways for the other two cases. 
Hence, there are 9 + 9 + 9 = 27 ways to choose three digits with two of the three digits 
correct. 
 
It follows that the probability that a player wins the second prize is 27/1000 = 0.027. 
 
EXAMPLE: 
                    What is the probability that a hand of five cards contains four cards of one 
kind?  
 
SOLUTION: 
 
         (i)           For determining the favorable outcomes we note that 
The number of ways to pick one kind = C(13, 1) 
The number of ways to pick the four of this kind out of the four of this kind in the deck = 
C(4, 4) 
 
The number of ways to pick the fifth card from the remaining 48 cards = C(48, 1) 
Hence, using the product rule the number of hands of five cards with four cards of one 
kind = C(13, 1) × C(4, 4) × C(48, 1)  
 

(ii) The total number of different hands of five cards = C(52, 5). 
 
 From (i) and (ii) it follows that the probability that a hand of five cards contains four 
cards of one kind is  
  
EXAMPLE: 
                    Find the probability that a hand of five cards contains three cards of one kind 
and two of another kind. 
 
SOLUTION: 
    (i)                 For determining the favorable outcomes we note that 
The number of ways to pick two kinds = C(13, 2) 
The number of ways to pick three out four of the first kind = C(4, 3) 
The number of ways to pick two out four of the second kind = C(4, 2) 
Hence, using the product rule the number of hands of five cards with three cards of one 
kind and two of another kind = C(13, 2) × C(4, 3) × C(4, 2)  
   
 
   (ii) The total number of different hands of five cards = C(52, 5). 

0024.0
960,598,2
48113

)5,52(
)1,48()4,4()1,13(

≈
⋅⋅

=
⋅⋅

C
CCC
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From (i) and (ii) it follows that the probability that a hand of five cards contains three 
cards of one kind and two of another kind is  
 

 
EXAMPLE: 
                    What is the probability that a randomly chosen positive two-digit number is a 
multiple of 6? 
 
SOLUTION: 

      1.    There are 
99 116 16
6 2

⎢ ⎥ ⎢ ⎥= + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
 positive integers from 1 to 99 that are divisible    

             by 6. Out of these 16 – 1 = 15 are two-digit numbers(as 6 is a multiple of 6 but  
             not a two-digit number). 
 
      2.    There are 99 – 9 = 90 positive two-digit numbers in all. 
 
      Hence, the probability that a randomly chosen positive two-digit number is a multiple 
of 6 = 15/90 = 1/6 ≈ 0.166667 
 
DEFINITION: 
                        Let E be an event in a sample space S, the complement of E is the event 
that occurs if E does not occur. It is denoted by E

c
. Note that E

c
 = S\E  

 
EXAMPLE: 
                    Let E be the event that an even number occurs when a die is tossed. Then E

c
 

is the event that an odd number occurs.  
 
THEOREM: 
Let E be an event in a sample space S. The probability of the complementary event E

c
of E 

is given by  
                     P(E

c
) = 1 – P(E). 

 
EXAMPLE: 
                    Let 2 items be chosen at random from a lot containing 12 items of which 4 
are defective. What is the probability that (i) none of the items chosen are defective, (ii) at 
least one item is defective? 
 
SOLUTION: 
                      The number of ways 2 items can be chosen from 12 items = C(12, 2) = 66. 
     (i)    Let A be the event that none of the items chosen are defective. 
            The number of favorable outcomes for A = The number of ways 2  items can be     
            chosen from 8 non-defective items = C(8, 2) = 28. 
            Hence, P(A) = 28/66 = 14/33. 
 
     (ii)   Let B be the event that at least one item chosen is defective.   

0014.0
960,598,2

3744
)5,52(

)2,4()3,4()2,13(
≈=

⋅⋅
C
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            Then clearly, B = A
c
 

            It follows that  
           P(B) = P(Ac) 
                   =1 – P(A) = 1 – 14/33 = 19/33. 
 
EXERCISE: 
                     Three light bulbs are chosen at random from 15 bulbs of which 5 are 
defective. Find the probability p that (i) none is defective, (ii) exactly one is defective, 
(iii) at least one is defective. 
 
SOLUTION: 

                      There are
15

455
3

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 ways  to choose 3 bulbs from the 15 bulbs. 

(i)   Since there are 15 - 5 = 10 non-defective bulbs, there are 
10

120
3

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 ways to choose 

3 non-defective bulbs.    
 
Thus  

   

(ii)    There are 5 defective bulbs and 
10

45
2

⎛ ⎞
=⎜ ⎟

⎝ ⎠
 different pairs of non-defective bulbs; 

hence there are
5 10

5.45 225
1 2

⎛ ⎞⎛ ⎞
= =⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
 ways to choose 3 bulbs of which one is defective. 

Thus 

 225 45
455 91

P = = . 

 
(iii)    The event that at least one is defective is the complement  of the event that none are 

defective which has by (i), probability 24
91

   . 

 Hence  24 67( ) 1 ( ) 1
91 91

p atleast oneis defective p noneis defective= − = − =

91
24

455
120

==p
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Lecture No.36   Laws of Probability 
 
ADDITION LAW OF PROBABILITY 
 
THEOREM: 
If A and B are two disjoint (mutually exclusive) events of a sample space S, then 

P (A∪B) = P(A) + P(B) 
In words, the probability of the happening of an event A or an event B or both is equal to 
the sum of the probabilities of event A and event B provided the events have nothing in 
common. 
 
PROOF: 
By inclusion - exclusion principle for mutually disjoint sets,  
  n (A ∪ B) = n(A) + n (B) 
Dividing both sides by n(S), we get 
 
 
 
 
 
 
 
EXAMPLE: 
                  Suppose a die is rolled. Let A be the event that 1 appears & B be the event 
that some even number appears on the die. Then 
         S = {1, 2, 3, 4, 5, 6}, A = {1} & B = {2, 4, 6} 
 
Clearly A & B are disjoint events and  
 
 
 
  
Hence the probability that a 1 appears or some even number appears is given by 
 
 
 
 
 
 
  
 
EXERCISE: 
                     A bag contains 6 white, 5 black and 4 red balls. Find the probability of 
getting a white or a black ball in a single draw. 
 
SOLUTION: 
                      Let A be the event of getting a white ball and B be the event of getting a 
black ball. 

( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) ( )

n A B n A n B
n S n S

n A n B
n S n S

P A B p A P B

∪ +
=

= +

⇒ ∪ = +

1 3( ) , ( )
6 6

P A P B= =

( ) ( ) ( )
1 3
6 6
4 2 .
6 3

P A B P A P B

Ans

∪ = +

= +

= =
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Total number of balls = 6 + 5 + 4 = 15 
 
Since the two events are disjoint (mutually exclusive),therefore 
 
 
 
 
 
 
  
 
 
 
EXERCISE: 
                     A pair of dice is  thrown. Find the probability of getting a total of 5 or 11. 
 
SOLUTION: 
                      When two dice are thrown, the sample space has 6 * 6 = 36 outcomes. Let 
A be the event that a total of 5 occurs and B be the event that a total of 11 occurs. 
Then  
A = {(1,4), (2,3), (3,2), (4,1)} and B = {(5,6), (6,5)}   
Clearly, the events A and B are disjoint (mutually exclusive) with probabilities given by 
 
Now by using the sum Rule for Mutually Exclusive events we get 
 
 
 
  
 
EXERCISE: 
                     For any two event A and B of a sample space S. Prove that  
P(A\B) = P(A∩B′) = P(A) - P(A ∩B) 
 
SOLUTION: 
                      The event A can be written as the union of two disjoint events A\B and  
A ∩B. i.e. A = (A\B) ∪ (A∩B) 
             Hence, by addition law of probability 
                  P(A) = P(A\B) + P(A ∩ B) 
            ⇒  P (A\B) = P(A) - P (A ∩B) 
 

A B
S

A\B A∩B  
 
 
 
 

6 5( ) , ( )
15 15

P A P B= =

( ) ( ) ( )
6 5

15 15
11
15

P A B P A P B

Ans

∪ = +

= +

=

( ) ( ) ( )
4 2 6 1

36 36 36 6

P A B P A P B

Ans

∪ = +

= + = =
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GENERAL ADDITION LAW OF PROBABILITY 

THEOREM 
If A and B are any two events of a sample space S, then  
P(A∪B) = P(A) + P(B) - P(A∩B) 
 
PROOF: 
The event A ∪ B may be written as the union of two disjoint events A\B and B. 
i.e.,  A ∪ B = (A\B) ∪ B 
Hence, by addition law of probability (for disjoint events) 
P(A ∪ B)= P(A\B) + P(B) 
               = [P(A) - P(A ∩ B)] + P(B) 
               = P(A) + P(B) - P(A ∩B) (proved) 
 

A B

A\B  
 
REMARK: 
                   By inclusion - exclusion principle 
                            n (A ∪ B) = n (A) + n(B) - n (A∩B) (where A and B are finite) 
 
                    Dividing both sides by n(S) and denoting the ratios as respective probabilities 
we get the  
 
Generalized Addition Law of probability. 
                    i.e P(A ∪ B) = P(A) + P(B) - P(A∩B)  
 
EXERCISE: 
                     Let A and B be events in a sample space S, and let 
P(A) = 0.65, P(B) = 0.30  and  P(A∩B) = 0.15 
Determine the probability of the events 
 
(a)A ∩ B′             (b) A∪B       (c)A′ ∩B′ 
 
 SOLUTION: 
       (a)  As we know that  
                     P(A ∩B′) = P(A) - P(A ∩B)      (as A-B=A∩B′ ) 
                                     = 0.65 - 0.15 
                                     = 0.50 
 
      (b)   By addition Law of probability    
                    P(A ∪B) = P(A) + P(B) - P(A ∩B)      (as A ∩ B ≠φ  ) 
                                   = 0.65 + 0.30 - 0.15 
                                  = 0.80 
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    (c)   By DeMorgan’s Law 
                          A′∩ B′ = (A∪B)′ 
                ∴ P(A′∩B′)   = P(A∪B)′ 
                                 = 1 - P (A∪B) 
                                       = 1 - 0.80  
                                       = 0.20     Ans. 
 
EXERCISE: 
                     Let A, B, C and D be events which form a partition of a sample space S. If 
P(A) = P(B), P(C) = 2 P(A) and P(D) = 2 P(C). Determine each of the following 
probabilities. 
                 (a)   P(A)         (b)  P(A∪B)         (c)    P(A∪C∪D) 
 
SOLUTION: 
(a)  Since A, B, C and D form a partition of S, therefore                
      S = A ∪B ∪C ∪D and A, B, C, D are pair wise disjoint. Hence, by addition law of 
probability. 
    P(S) = P(A) + P(B) + P(C) + P(D) 
⇒ 1     = P(A) + P(A) + 2P(A) +2 P(C) 
⇒ 1     = 4P(A) + 2 (2P(A)) 
⇒ 1     = 8 P(A)   
⇒  
 
 
(b) P(A∪B) = P(A) + P(B) 
                    = P(A) + P(A)      [∴ P(B) = P(A)] 
                    = 2 P(A) 
                     
                    =  
 
 
(c) P(A ∪C ∪D) = P(A) + P(C) + P(D) 
                            = P(A) + 2 P(A) + 2 (2P(A))            [∴ P(C) = 2 P(A) & P(D) = 2 P(C)] 
                            = 7 P(A) 
    
                            =                   Ans. 
 
 
EXERCISE: 
                    A card is drawn from a well-shuffled pack of playing card. What is the 
probability that it is either a spade or an ace? 
 
SOLUTION: 
                     Let A be the event of drawing a spade and B be the event of drawing an ace. 
Now A and B are not disjoint events. A ∩ B represents the event of drawing an ace of 
spades. 
 
 
 

1 12
8 4

⎛ ⎞ =⎜ ⎟
⎝ ⎠

1 77
8 8

⎛ ⎞ =⎜ ⎟
⎝ ⎠

1( )
8

P A =
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Now 
 
 
 
 
 
 
 
 
 
 
 
 
EXERCISE: 
                     A class contains 10 boys and 20 girls of which half the boys and half the 
girls have brown eyes. Find the probability that a student chosen at random is a boy or has 
brown eyes. 
 
 
SOLUTION: 
                     Let A be the event that a boy is chosen and B be the event that a student with 
brown eyes is chosen.Then A and B are not disjoint events. Infact, A∩B represents the 
event that a boy with brown eyes is chosen. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
EXERCISE: 
                    An integer is chosen at random from the first 100 positive integers. What is 
the probability that the integer chosen is divisible by 6 or by 8? 
 
SOLUTION: 
                     Let A be the event that the integer chosen is divisible by 6, and B be the 
event that the integer chosen is divisible by 8. 
A∩B is the event that the integer is divisible by both 6 and 8 (i.e. as their L.C.M. is 24) 
 
 
 
 

13 4( ) ; ( )
52 52
1( )

52
( ) ( ) ( ) ( )

13 4 1
52 52 52
16 4
52 13

P A P B

P A B

P A B P A P B P A B

= =

∩ =

∴ ∪ = + − ∩

= + −

= =

10 10( )
10 20 30
5 10 15( )

10 20 30
and

5 5( ) ( )
10 20 30

( ) ( ) ( ) ( )
10 15 5
30 30 30
20 2 .
30 3

P A

P B

P A B as someboys also havebrown eyes

P A B P A P B P A B

Ans

= =
+
+

= =
+

∩ = =
+

∴ ∪ = + − ∩

= + −

= =
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Now  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
OR 
Let A denote the event that the integer chosen is divisible by 6, and B denote the event 
that the integer chosen is divisible by 8 i.e  

A={6,12,18,24,…,90,96}  ⇒   n(A)=16        16( )
100

P A⇒ =  

 
 

B={8,16,24,40,…,88,96}  ⇒  n(B)=12         12( )
100

P B⇒ =  
 

A ∩ B={24,48,72,96}       ⇒  n(A ∩ B)=12   4( )
100

P A B⇒ ∩ =  

 
 
EXERCISE: 
                    A student attends mathematics class with probability 0.7 skips accounting 
class with probability 0.4, and attends both with probability 0.5. Find the probability that  
              (1)  he attends at least one class 
              (2)  he attends exactly one class 
 
SOLUTION: 
         (1)      Let A be the event that the student attends mathematics class and B be the 
event that the student attends accounting class. 
Then given 
 P(A) = 0.7; P(B) = 1 - 0.4 = 0.6 
And P(A∩B) = 0.5, P(A∪B) = ? 
By addition law of probability 
P(A ∪ B) = P(A) + P(B) - P(A∩B) 
                = 0.7 + 0.6 - 0.5 
                = 0.8 
(2)  Students can attend exactly one class in two ways 
     (a)He attends mathematics class but not accounting i.e., event A ∩Bc  or 
     (b)He does not attend mathematics class and attends accounting class i.e., event Ac ∩B 
 
Since the two event A∩Bc and Ac ∩ B are disjoint, hence required probability is  

100 100( ) 16; ( ) 12
6 8

and
100( ) 4
24

Hence ( ) ( ) ( ) ( )
16 12 4
100 100 100
24 6

100 25

n A n B

n A B

P A B P A P B P A B

Ans

⎢ ⎥ ⎢ ⎥= = = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥∩ = =⎢ ⎥⎣ ⎦
∪ = + − ∩

= + −

= =
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P(A ∩Bc) + P(Ac ∩B) 
Now  
P(A ∩Bc)= P(A\B) 
               = P(A) - P(A ∩B) 
               = 0.7 - 0.5  
               = 0.2 
and 
P(Ac ∩B)= P(B\A) 
               = P(B) - P(A ∩B) 
               = 0.6 - 0.5  
               = 0.1 
Hence required probability is 
P(A ∩Bc) + P(Ac∩B) = 0.2 + 0.1 = 0.3 
 
PROBABILITY OF SUB EVENT 
THEOREM: 
If A and B are two events such that A⊆B, then P(A) ≤ P(B) 
 
PROOF: 
Suppose A ⊆ B. The event B may be written as the union of disjoint events B∩A and  
B A∩  
i.e., B = (B ∩ A)∪( B A∩ ) 
But B ∩A = A     ( as  A ⊆ B )   
So B = A∪( B A∩ ) 
∴ P(B) = P(A) + P( B A∩ ) 
But P( B A∩ ) ≥ 0 
Hence P(B) ≥ P(A)  
Or  P(A)≤P(B) 

 
 
EXERCISE: 
                     Let A and B be subsets of a sample space S with P(A) = 0.7 and P(B) = 0.5. 
What are the maximum and minimum possible values of P(A∪B). 
SOLUTION: 
By addition law of probabilities  
P(A ∪B) = P(A) + P(B) - P(A∩B) 
               = 0.7 + 0.5 - P(A ∩B) 

A 
B S 

B ∩A B ∩A 
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               = 1.2 - P(A ∩B) 
Since probability of any event is always less than or equal to 1, therefore 
max P(A ∪B) = 1, for which P(A ∩B) = 0.2  
Next to find the minimum value, we note  
     A ∩ B ⊆ B 
⇒ P(A ∩B)≤P(B) = 0.5 
Thus for min P(A∪B) we take maximum possible value of P(A∩B) which is 0.5. Hence  
min P(A ∪B) = 1.2 - max P(A ∩B) 
                      = 1.2 - 0.5 
                      = 0.7 is the required minimum value. 
ADDITION LAW OF PROBABILITY FOR THREE EVENTS: 
If A, B and C are any three events, then 
P(A∪B∪C) = P(A) + P(B) + P(C) - P(A∩B) - P (A ∩C) - P(B ∩C) + P(A ∩B ∩C) 
 
REMARK: 
                  If A, B, C are mutually disjoint events, then P(A∪B∪C)= P(A) + P(B) + P(C) 
 
EXERCISE: 
                    Three newspapers A, B, C are published in a city and a survey of readers 
indicates the following: 
20% read A, 16% read B, 14% read C 
8% read both A and B, 5% read both A and C 
4% read both B and C, 2% read all the three 
For a person chosen at random, find the probability that he reads none of the papers. 
 
SOLUTION: 
Given 
 
 
 
 
 
  
 
 
 
 
 
 
Now the probability that person reads A or B or C =  P(A∪B∪C) 
                                = P(A) + P(B) + P(C) - P(A∩B) - P(A ∩C) - P(B ∩C)+ P(A ∩B ∩C) 
 
 
 
  
 
 
 
Hence, the probability that he reads none of the papers 

20 16( ) 20% 0.2; ( ) 16% 0.16
100 100
14 8( ) 14% 0.14; ( ) 8% 0.08
100 100

5 4( ) 5% 0.05; ( ) 4% 0.04
100 100

and
2( ) 2% 0.02

100

P A P B

P C P A B

P A C P B C

P A B C

= = = = = =

= = = ∩ = = =

∩ = = = ∩ = = =

∩ ∩ = = =

20 16 14 8 5 4 2
100 100 100 100 100 100 100
35

100

= + + − − − +

=
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EXERCISE: 
                     Let A, B and C be events in a sample space S, with A∪B∪C=S, 
 A∩(B ∪ C) =φ, P(A) = 0.2, P(B) = 0.5 and P(C) = 0.7. Find P(AC), 
 P(B ∪C),P(B∩C). 
 
SOLUTION: 
                     P(A c ) = 1 - P(A) 
                                = 1 - 0.2  
                     P(A c ) = 0.8 
Next, given that the events A and B∪C are disjoint, since A∩(B∪C)= φ, therefore 
      
    P(A∪(B∪C)) = P(A) + P(B∪ C) 
⇒            P(S)    = 0.2 + P(B ∪C) 
⇒            1         = 0.2 + P(B ∪C) 
⇒       P(B ∪C)  = 1 - 0.2 = 0.8 
 
Finally, by addition law of probability 
      P(B∪C)= P(B) + P(C) - P(B∩C) 
⇒      0.8    = 0.5 + 0.7 - P(B∩C) 
⇒ P (B∩C)= 0.4 is the required probability.

 
 

 
 
 
 
 
 
 
 
 
 
 
 

(( ) )
1 ( )

351
100

65
100
65%

cP A B C
P A B C

= ∪ ∪
= − ∪ ∪

= −

=

=
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Lecture# 37    Conditional probability 
 
CONDITIONAL PROBABILITY  
MULTIPLICATION THEOREM 
INDEPENDENT EVENTS 
 
EXAMPLE: 
a. What is the probability of getting  a 2 when a dice is tossed? 
b. An even number appears on tossing a die. 
      (i)  What is the probability that the number is 2? 
      (ii) What is the probability that the number is 3? 
SOLUTION: 
                     When a dice is tossed, the sample space is  S={1,2,3,4,5,6}  
                                                n(S)=6 
 a.  Let “A” denote the event of getting a 2 i.e  A={ 2 }, n(A)=1 
        

P( 2 appears when the die is tossed) = ( )
( )

1
6

n A
n S

=  

 
b. (i) Let “S1” denote the total number of even numbers from a sample space S,when a 
dice is tossed (i.e S1⊆S )   
          S1={ 2,4,6 },  n(S1)=3  
Let “B” denote the event of getting a 2 from total number of even number i.e B={ 2 } 
              n( B ) = 1  

          P(2 appears; given that the number is even) = P(B) = ( )
( )1

1
3

n B
n S

=  

    (ii)  Let “C” denote the event of getting a 3 in S1(among the even numbers)i.e C={ } 
                n(C)=0  

           P(3 appears; given that the number is even) =P(C ) = ( )
( )1

0 0
3

n C
n S

= =  

EXAMPLE: 
                    Suppose that an urn contains 3 red balls, 2 blue balls, and 4 white balls, and 
that a ball is selected at random. 
Let E be the event that the ball selected is red.  
Then P(E) = 3/9  (as there are 3 red balls out of  total 9 balls) 
Let F be the event that the ball selected is not white. 
Then the  probability of E if it is already known that the selected ball is not white would 
be 
P(red ball selected; given that the selected ball is not white) = 3/5 (as we count no white 
ball so there are total 9 balls(i.e 2 blue and 3 red balls ) ) 
This is called the conditional probability of E given F and is denoted by P(E|F). 
 
DEFINITION: 
                        Let E and F be two events in the sample space of an experiment with 
P(F) ≠ 0.  The conditional probability of E given F, denoted by P(E|F), is defined as 
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EXAMPLE: 
         Let A and B be events of an experiment such that  
P(B) = 1/4 and P(A∩B) = 1/6.  
 
What is the conditional probability P(A|B)? 
 
SOLUTION: 
 
 
 
 
EXERCISE: 
                     Let A and B be events with 
Find  
 
 
 
 
SOLUTION: 
                      Using the formula of the conditional Probability we can write  

 
 
 
 
 
 
 
 
 
                                                    
                                                       (As ( )P B A∩ = ( )P A B∩ = 1/ 4  ) 
 
 
 
 
 
 
 
 
 
 

P(E F)P(E|F)
P(F)

∩
=

P(A B) 1/ 6 4 2P(A|B)
P(B) 1/ 4 6 3

∩
= = = =

( ) ( | ) ( ) ( | )
( ) ( ) ( ) ( | )c c

i P A B ii P B A
iii P A B iv P A B∪

( )( ) ( | )
( )

1/ 4 3
1/ 3 4

P A Bi P A B
P B

∩
=

= =

( )( ) ( | )
( )

1/ 4 2 1
1/ 2 4 2

P B Aii P B A
P A

∩
=

= = =

( ) ( ) ( ) ( ) ( )
1 1 1
2 3 4
7

12

iii P A B P A P B P A B∪ = + − ∩

= + −

=

1 1 1( ) , ( )   and  ( )
2 3 4

P A P B P A B= = ∩ =
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( )( ) ( | )
( )

(( ) ) (By using DeMorgan's Law)
( )

1 ( ) [ ( ) 1 ( ) ]
1 ( )

1 7 /12 5 /12 5 3 5
1 1/ 3 2 / 3 12 2 8

c c
c c

c

c

c

c

P A Biv P A B
P B

P A B
P B
P A B P E P E

P B

∩
=

∪
=

− ∪
= = −

−
−

= = = × =
−

 

 
 
EXERCISE: 
                     Find P(B|A) if 
(i) A is a subset of B 
(ii) A and B are mutually exclusive 
 
SOLUTION: 
(i) When A ⊆ B, then B ∩ A = A     ( As  A∩A⊆B∩A �� ⊆ B∩A  ……………..(i) 
 also we know that B∩A⊆ A  ……………..(ii) , From (i) and (ii) clearly  B ∩ A = A )      
 
 
 
 
 
 
(ii) When A and B are mutually exclusive, then B ∩ A=∅ 
 
 
 
 
 
 
 
 
  
EXAMPLE: 
                    Suppose that an urn contains three red balls marked 1, 2, 3, one blue ball 
marked 4, and four white balls marked 5, 6, 7, 8.  
A ball is selected at random and its color and number noted. 
(i) What is the probability that it is red? 
(ii) What is the probability that it has an even number marked on it? 
(iii) What is the probability that it is red, if it is known that the ball selected has an even 
number marked on it? 
(iv) What is the probability that it has an even number marked on it, if it is known that the 
ball selected is red? 
 
 

( )( | ) ( ( ) ( ) )
( )

( ) 1
( )

P B AP B A as B A A P B A P A
P A

P A
P A

∩
∴ = ∩ = ⇒ ∩ =

= =

( )( | )
( )

( ) ( ( ) 0)
( )

0 0 ( ( ) 0 )
( )

P B AP B A
P A

P Since B A P B A
P A

as P
P A

φ φ

φ

∩
∴ =

= ∩ = ⇒ ∩ =

= = =
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SOLUTION: 
           Let E be the event that the ball selected is red  . 
(i) P(E) = 3/8 
 
let F be the event that the ball selected has an even number marked on it. 
(ii) P(F) = 4/8  (as there are four even numbers 2,4,6 & 8 out of total eight numbers). 
 
(iii) E∩F is the event that the ball selected is red and has an even number marked on it. 
Clearly P(E∩F) =1/8  (as there is only one ball which is red and marked an even number 
”2” out of total eight balls).  
Hence, 
P(Selected ball is red, given that the ball selected has an even  
   number marked on it.) = P(E|F) 
 
 
 
(iv) P(Selected ball has an even number marked on it, given that  
       the ball selected is red) = P(F|E) 
 
 
 
 
EXAMPLE: 
                    Let a pair of dice be tossed. If the sum is 7, find the probability that one of 
the dice is 2. 
 
SOLUTION: 
          Let E be the event that a 2 appears on at least one of the two dice, and F be 
the event that the sum is 7. 
Then 
E = {(1, 2), (2, 1), (2, 2), (2, 3), (2, 4), (2, 5), (2, 6) ,(3, 2) (4, 2), (5, 2), ,(6, 2)} 
F = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)} 
E∩F = {(2, 5), (5, 2)} 
P(F) = 6/36  and  P(E∩F) = 2/36. 
Hence, 
P(Probability that one of the dice is 2, given that the sum is 7)   
            = P(E|F) 
 
 
 
 
EXAMPLE: 
                    A man visits a family who has two children. One of the children, a boy, 
comes into the room.  
Find the probability that the other child is also a boy if  
(i) The other child is known to be elder,  
(ii) Nothing is known about the other child. 
 

P(E F) 1/ 8 1/ 4
P(F) 4 / 8

∩
= = =

P(E F) 1/ 8 1
P(E) 3/ 8 3

∩
= = =

P(E F) 2 / 36 1
P(E) 6 / 36 3

∩
= = =
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SOLUTION: 
          The sample space of the experiment is S = {bb, bg, gb, gg} 
(The outcome bg specifies that younger is a boy and elder is a girl, etc.) 
Let A be the event that both the children are boys.  
Then, A = {bb}. 
(i) Let B be the event that the younger is a boy. Then, B = {bb, bg},and A∩B = {bb}.   
Hence, the required probability is 
P(Probability that the other child is also a boy, given that the other child is elder) =  
 
       P(A|B) 
 
(ii) Let C be the event that one of the children is a boy.  
      Then    C = {bb, bg, gb}, and A∩C = {bb}.  
Hence, the required probability is 
P(Probability that both the children are boys, given that one of the children is a boy)   
 = P(A|C) 
 
 
 
  
MULTIPLICATION THEOREM 
 
Let E and F be two events in the sample space of an experiment, then   
P(E∩F) = P(F)P(E | F) 
Or  P(E∩F)  = P(E)P(F | E) 
  
Let E1, E2, . . . , En be events in the sample space of an experiment, then 
P(E1∩E2 ∩ . . . ∩En) = P(E1)P(E2 | E1) P(E3 | E1∩E2) . . . P(En | E1∩E2 ∩ . . . ∩En) 
 
EXAMPLE: 
                    A lot contains 12 items of which 4 are defective. Three items are drawn at 
random from the lot one after the other. What is the probability that all three are non-
defective? 
SOLUTION: 
           Let A1 be the event that the first item is not defective. 
Let A2 be the event that the second item is not defective. 
Let A3 be the event that the third item is not defective. 
Then P(A1) = 8/12,  P(A2|A1) = 7/11,  and  P(A3|A1∩A2) = 6/10 
Hence, by multiplication theorem, the probability that all three are non-defective is  
P(A1∩A2∩A3) = P(A1) P(A2|A1) P(A3|A1∩A2)     
   
             =   
 
 
INDEPENDENCE: 
An event A is said to be independent of an event B if the probability that A occurs is not 
influenced by whether B has or has not occurred. That is, P(A|B) = P(A). 

P(A B) 1/ 4 1
P(B) 2 / 4 2

∩
= = =

P(A C) 1/ 4 1
P(C) 3/ 4 3

∩
= = =

8 7 6 14
12 11 10 55

⋅ ⋅ =
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It follows then from the Multiplication Theorem that, 
P(A∩B) = P(B)P(A|B) = P(B)P(A) 
We also know that, 
 
 
 
 
  
 
 
 
 
EXAMPLE: 
                    Let A be the event that a randomly generated bit string of length four begins 
with a 1 and let B be the event that a randomly generated bit string of length four contains 
an even number of 0s.  
Are A and B independent events? 
 
SOLUTION: 
 A = {1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111} 
 B = {0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111} 
Since there are 16 bit strings of length four, we have 
P(A) = 8/16 = 1/2,  P(B) = 8/16 = 1/2 
Also, 
A∩B = {1001, 1010, 1100, 1111} so that P(A∩B) = 4/16 =1/4 
We note that, 
 
 
Hence A and B are independent events. 
 
EXAMPLE: 
                    Let a fair coin be tossed three times. Let A be the event that first toss is 
heads, B be the even that the second toss is a heads, and C be the event that exactly two 
heads are tossed in a row. Examine pair wise independence of the three events. 
SOLUTION: 
  The sample space of the experiment is 
 S = {HHH, HHT, HTH, HTT, THH, THT, TTH, TTT} and the events are 
 A = {HHH, HHT, HTH, HTT} 
 B = {HHH, HHT, THH, THT} 
 C = {HHT, THH} 
            A∩B = {HHH, HHT}, A∩C = {HHT}, B∩C = {HHT, THH} 
It follows that 
P(A) = 4/8=1/2 
P(B) = 4/8= 1/2  
P(C) = 2/8=1/4 
and 
P(A∩B)=2/8=1/4  
P(A∩C)= 1/8  

P(A B)P(B|A)
P(A)

P(A)P(B) (A B) P(A)P(B) ,due to independence
P(A)

P(B)

Because P

∩
=

= ∩ =

=

1 1 1P(A B) P(A)P(B)
4 2 2

∩ = = ⋅ =
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P(B∩C) =2/8= 1/4 
Note that, 
 
 
 
 
 
 
 
  
EXAMPLE: 
                    The probability that A hits a target is 1/3 and the probability that B hits the 
target is 2/5. What is the probability that target will be hit if A and B each shoot at the 
target? 
 
SOLUTION: 
                      It is clear from the nature of the experiment that the two events are 
independent.  
Hence, 
P(A∩B) = P(A)P(B) 
It follows that, 
P(A∪B) = P(A) + P(B) – P(A∩B)  
   = P(A) + P(B) – P(A)P(B) (due to independence )  

 

 

 
 
 

 

 

 

 

 

 

 
 
 
 
 

1 1 1P(A)P(B)  P(A B), so that A and B are independent.
2 2 4
1 1 1P(A)P(C)  P(A C), so that A and C are independent.
2 4 8
1 1 1P(B)P(C)  P(B C), so that B and C are dependent.
2 4 8

= ⋅ = = ∩

= ⋅ = = ∩

= ⋅ = ≠ ∩

5
3

5
2

3
1

5
2

3
1

=

⋅−+=
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Lecture# 38    Random variable 
 
RANDOM VARIABLE 
PROBABILITY DISTRIBUTION 
EXPECTATION AND VARIANCE 
 
INTRODUCTION: 
                                 Suppose S is the sample space of some experiment. The outcomes of 
the experiment, or the points in S, need not be numbers. For example in tossing a coin, 
the outcomes are H (heads) or T(tails), and in tossing a pair of dice the outcomes are pairs 
of integers.  
 
However, we frequently wish to assign a specific number to each outcome of the 
experiment. For example, in coin tossing, it may be convenient to assign 1 to H and 0 to 
T; or in the tossing of a pair of dice, we may want to assign the sum of the two integers to 
the outcome. Such an assignment of numerical values is called a random variable. 
 
RANDOM VARIABLE: 
A random variable X is a rule that assigns a numerical value to each outcome in a sample 
Space S.   OR    It is a function which maps each outcome of the sample space into the set 
of real numbers. 
 
We shall let X(S) denote the set of numbers assigned by a random variable X, and refer to 
X(S) as the range space. 
In formal terminology, X is a function from S(sample space) to the set of real numbers R, 
and X(S) is the range of X. 
 
REMARK: 
               1. A random variable is also called a chance variable, or a stochastic 
variable(not called simply a variable, because it is a function). 
               2. Random variables are usually denoted by capital letters such as X, Y, Z; and 
the values taken by them are represented by the corresponding small letters. 
 
EXAMPLE: 
                     A pair of fair dice is tossed. The sample space S consists of the 36 ordered 
pairs  i.e   
             S = {(1,1), (1,2), (1,3), …, (6,6)} 
 
Let X assign to each point in S the sum of the numbers; then X is a random variable with 
range space i.e  
 X(S) = {2,3,4,5,6,7,8,9,10,11,12} 
 
Let Y assign to each point in S the maximum of the two numbers in the outcomes; then Y 
is a random variable with range  space. 
 Y(S) = {1,2,3,4,5,6} 
 
PROBABILITY DISTRIBUTION OF A RANDOM VARIABLE: 
Let X(S) = {x1, x2, …, xn} be the range space of a random variable X defined on a finite 
sample space S.  
Define a function f on X(S)  as follows: 
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 f(xi) = P (X = xi)  
         = sum of probabilities of points in S whose image is xi. 
This function f is called the probability distribution or the probability function of X. 
The probability distribution f of X is usually given in the form of a table. 
 
 
x1 x2 … xn 

f(x1) f(x2) … f(xn) 

 
The distribution f satisfies the conditions. 
 
 
 
EXAMPLE: 
                     A pair of fair dice is tossed. Let X assign to each point (a, b) in  
S = {(1,1), (1,2), …, (6,6)}, the sum of its number, i.e., X (a,b) = a+b. Compute the 
distribution f of X. 
 
SOLUTION: 
                     X is clearly a random variable with range space  
X(S) = {2,3,4,5,6,7,8,9,10, 11, 12}    
( because X (a,b) = a+b ⇒ X (1,1) = 1+1=2,  X (1,2) = 1+2=3,  X (1,3) = 1+3=4  etc).   
 
The distribution f of X may be computed as: 
 

 
 
 
 
 
 
 
 
 
 

5(6) ( 6) ({(1,5), (2,4), (3,3), (4,2), (5,1)})
36

6(7) ( 7) ({(1,6), (2,5), (3,4), (4,3), (5,2), (6,2)})
36

f P X P

f P X P

= = = =

= = = =
 

 
5(8) ( 8) ({(2,6), (3,5),(4,4),(5,3),(6,2)})

36
4(9) ( 9) ({(3,6),(4,5),(5,4),(6,3)})
36

3(10) ( 10) ({(4,6),(5,5), (6,4)})
36

f P X P

f P X P

f P X P

= = = =

= = = =

= = = =

 

1
( ) ( ) 0 and ( ) ( ) 1

n

i i
i

i f x ii f x
=

≥ =∑

1f(2) = P(X=2)=P({(1,1)}) = 
36

2f(3) = P(X=3) = P({(1,2), (2,1)}) = 
36

3f(4) = P(X=4) = P({(1,3), (2,2),(3,1)}) =  
36

4f(5) = P(X=5) = P({(1,4), (2,3),(3,2),(4,1)}) = 
36
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2(11) ( 11) ({(5,6), (6,5)})
36

1(12) ( 12) ({(6,6)})
36

f P X P

f P X P

= = = =

= = = =
 

 
The distribution of X consists of the points in X(S) with their respective probabilities. 
 
xi  2 3 4 5 6 7 8 9 10 11 12 
f(xi) 1/36 2/36 3/36 4/36 5/36 6/36 5/36 4/36 3/36 2/36 1/36 
 
EXAMPLE: 

        A box contains 12 items of which three are defective. A sample of three 
items is selected from the box.  
If X denotes the number of defective items in the sample; find the distribution of X. 
 
SOLUTION: 

         The sample space S consists of                      that is 220  different samples of 
size 3. 
The random variable X, denoting the number of defective items has the range space 
X(S) = {0,1,2,3} 

There are 
3
0

⎛ ⎞
⎜ ⎟
⎝ ⎠

               samples of size 3 with no defective items;  

hence  
 

 
  
There are                          samples of size 3 containing one  defective item;  
hence          . 
 
 
 
There are                           samples of size 3 containing two defective items; 
 
 hence 
 
 
 

Finally, there is 
3 9

 27
3 0

⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 , only one sample of size 3 containing three  

defective items;  
hence  
 
 
 
The distribution of X follows: 
 

12
220

3
⎛ ⎞

=⎜ ⎟
⎝ ⎠

9
84

3
⎛ ⎞

=⎜ ⎟
⎝ ⎠

0
84( 0)
220

p P X= = =

3 9
 108

1 2
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

1
108( 1)
220

p P X= = =

3 9
 27

2 1
⎛ ⎞ ⎛ ⎞

=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

3
1( 3)

220
p P X= = =

2
27( 2)
220

p P X= = =
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xi 0 1 2 3 

pi 84/220 108/220 27/220 1/220 

 

EXPECTATION OF A RANDOM VARIABLE 
 
Let X be a random variable with probability distribution 
 
xi x1 x2 x3 … xn 

f(xi) f(x1) f(x2) f(x3) … f(xn) 

 
The mean (denoted µ) or the expectation of X (written E(X)) is defined by 
µ = E(X) = x1 f(x1) + x2 f(x2) + … + xnf(xn) 
 
 
  
EXAMPLE: 
                    What is the expectation of the number of heads when three fair coins are 
tossed? 
SOLUTION: 
                      The sample space of the experiment is: 
S = {TTT, TTH, THT, HTT, THH, HTH, HHT, HHH} 
Let the random variable X represents the number of heads ( i.e 0,1,2,3 ) when three fair 
coins are tossed. Then X has the probability distribution. 
 
xi x0=0 x1=1 x2=2 x3=3 

f(xi) 1/8 3/8 3/8 1/8 

 
Hence, expectation of X is 
 
 
 
 
 
 
EXERCISE: 
                    A player tosses two fair coins. He wins Rs. 1 if one head appears, Rs.2 if  
two heads appear. On the other hand, he loses Rs.5 if no heads appear. Determine the 
expected value E of the game and if it is favourable to be player. 
 
SOLUTION: 
                     The sample space of the experiment is  S = {HH, HT, TH, TT} 
Now 

1
( )

n

i i
i

x f x
=

= ∑

0 0 1 1 2 2 3 3( ) x  f(x ) + x f(x ) + x f(x ) + x f(x )
1 3 3 1 120 1 2 3 1 5
8 8 8 8 8

E X =

= ⋅ + ⋅ + ⋅ + ⋅ = = ⋅
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Thus, the probability of winning Rs.2 is      , of winning Rs 1 is       and of losing Rs 5 is  .    
 
Hence,  
 
 
 
 
 
 
Since, the expected value of the game is negative, so it is unfavorable to the player. 
 
EXAMPLE: 
                    A coin is weighted so that and  .    and 
The coin is tossed three times.  
Let X denotes the number of heads that appear. 
(a) Find the distribution of X 
(b) Find the expectation of E(X) 
 
SOLUTION: 
(a)  The sample space is  S = {HHH, HHT, HTH, THH, HTT, THT, TTH, TTT} 
 
The probabilities of the points in sample space are 
 

            3 3 3 27 3 3 1 9( ) ( )
4 4 4 64 4 4 4 64

p HHH p HHT= ⋅ ⋅ = = ⋅ ⋅ =  

 

             
3 1 3 9 1 3 3 9( ) ( )
4 4 4 64 4 4 4 64

p HTH p THH= ⋅ ⋅ = = ⋅ ⋅ =  

 
 
 
  
 
 
 
 
 
 
 
 
 

1 1 1(Two heads) ( )
2 2 4

1 1 1 1 1(One head) ( , )
2 2 2 2 2

1 1 1(No heads) ( )
2 2 4

P P HH

P P HT TH

P P TT

= = ⋅ =

= = ⋅ + ⋅ =

= = ⋅ =

1 1 12( ) 1( ) 5( )
4 2 4
1 0.25
4

E = + −

= − = −

3( )
4

P H =
1( )
4

P T =

1
4

1
2

1
4

3 1 1 3 1 3 1 3( ) ( )
4 4 4 64 4 4 4 64
1 1 3 3 1 1 1 1( ) ( )
4 4 4 64 4 4 4 64

p HTT p THT

p TTH p TTT

= ⋅ ⋅ = = ⋅ ⋅ =

= ⋅ ⋅ = = ⋅ ⋅ =
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The random variable X denoting the number of heads assumes the values 0,1,2,3 with the 
probabilities: 
 
 
 
 
 
 
 
 
 
  
 
Hence, the distribution of X is 
 

xi 0 1 2 3 

P(xi) 1/64 9/64 27/64 27/64 

 
 
(b) The expected value E(X) is obtained by multiplying each value of X by its probability 
and taking the sum. 
The distribution of X is 
 

xi 0 1 2 3 

P(xi) 1/64 9/64 27/64 27/64 

 
Hence 
 
 
 
 
 
 
 
VARIANCE AND STANDARD DEVIATION OF A RANDOM VARIABLE: 
Let X be a random variable with mean µ and the probability distribution 
 

x1 x2 x3 … xn 

f(x1) f(x2) f(x3) … f(xn) 

 
The variance of X, measures the “spread” or “dispersion” of X from the mean µ and is 
denoted and defined as  
 
 

1(0) ( )
64

3 3 3 9(1) ( , , )
64 64 64 64

9 9 9 27(2) ( , , )
64 64 64 64

27(3) ( )
64

P P TTT

P P HTT THT TTH

P P HHT HTH THH

P P HHH

= =

= = + + =

= = + + =

= =

1 9 27 27( ) 0 1 2 3
64 64 64 64

144
64

2 25

E X ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

=

= ⋅
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The last expression is a more convenient form for computing Var(X). 
The standard derivation of X, denoted by        , is the non-negative square root of Var(X): 
 
Where   
 
EXERCISE: 
                    Find the expectation µ, variance σ2 and standard deviation σ of the 
distribution given in the following table. 
 

xi 1 3 4 5 

f(xi) 0.4 0.1 0.2 0.3 

 
 
SOLUTION: 
                      µ = E(X) = ∑ xi f(xi) 
                                     = 1(0.4) + 3(0.1) + 4(0.2) + 5(0.3) 
                                    = 0.4 + 0.3 + 0.8 + 1.5 
                                   = 3.0 
Next 
E(X2) = ∑ xi

2 f(xi)  
          = 12 (0.4) + 32 (0.1) + 42 (0.2) + 52 (0.3) 
          = 0.4 + 0.9 + 3.2 + 7.5 
          = 12.0 
Hence 
σ2 = Var(X)= E(X2) - µ2 
                   = 12.0 - (3.0) 2 = 3.0 
and 
 
EXERCISE: 
                    A pair of fair dice is thrown. Let X denote the maximum of the two numbers  
which appears. 
(a) Find the distribution of X 
(b) Find the µ, variance σx

2 = Var(X), and standard deviation σx  of X 
 
SOLUTION: 
(a) The sample space S consist of the 36 pairs of integers (a,b) where a and b range from 
1 to 6;   
that is   S = {(1,1), (1,2), …, (6,6)} 
Since X assigns to each pair in S the larger of the two integers, the value of X are the 
integers from 1 to 6. 
 

2 2

1
2

2 2

2 2

Var( ) ( ) ( )

(( ) )
( )

( )

n

x i i
i

i i

X x f x

E X
E X

x f x

σ µ

µ

µ

µ

=

= = −

= −

= −

= −

∑

∑

Xσ

Var( )X Xσ =

Var( ) 3.0 1.7Xσ = = ≈
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Note that: 
 
 
 
 
 
 
 
 
 
  
Similarly 

      
(5) ( 5) {(1,5), (2,5), (3,5), (4,5), (5,1), (5,2), (5,3), (5,4), (5,5)}

9
36

f P X= = =

=
      

 
(6) ( 6) {(1,6), (2,6), (3,6), (4,6), (5,6), (6,1), (6, 2), (6,3), (6,4), (6,5), (6,6)}

11
36

f P X= = =

=
  

Hence, the probability distribution of x is: 
 
xi 1 2 3 4 5 6 

f(xi) 1/36 3/36 5/36 7/36 9/36 11/36 

 
(b)    We find the expectation (mean) of X as 
 
 
 
 
  
Next 
 
 
 
 
 
 
  
Then 
 
 
 
 
 
 
 

1(1) ( 1) ({(1,1)})
36

3(2) ( 2) ({(2,1), (2,2), (1, 2)})
36

5(3) ( 3) ({(3,1), (3, 2), (3,3), (2,3), (1,3)})
36

7(4) ( 4) ({(4,1), (4,2), (4,3), (4, 4), (3, 4), (2, 4), (1, 4)})
36

f P X P

f P X P

f P X P

f P X P

= = = =

= = = =

= = = =

= = = =

( ) ( )
1 1 5 7 9 111 2 3 4 5 6
36 36 36 36 36 36

161 4.5
36

i iE X x f xµ = =

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= ≈

∑

2 2

2 2 2 2 2 2

( ) ( )
1 1 1 7 9 111 2 3 4 5 6
36 36 36 36 36 36

791 22.0
36

i iE X x f x=

= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅

= ≈

∑

2 2 2

2

Var( ) ( )

22.0 (4.5)
17.5

and

17.5 1.3

x

x

X E Xσ µ

σ

= = −

= −
=

= ≈
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                                                Lecture# 39    Introduction to Graphs 
 
INTRODUCTION TO GRAPHS 
 
INTRODUCTION: 
                                Graph theory plays an important role in several areas of computer 
science such as: 

• switching theory and logical design 
• artificial intelligence 
• formal languages 
• computer graphics 
• operating systems 
• compiler writing 
• information organization and retrieval. 

GRAPH: 
A graph is a non-empty set of points called vertices and a set of line segments joining 
pairs of vertices called edges. 
Formally, a graph G consists of two finite sets: 
(i) A set V=V(G) of vertices (or points or nodes) 
(ii)A set E=E(G) of edges; where each edge corresponds to a pair of vertices. 

e3 e2

e1

e5

e4

v1 v2

v3
e6

v5

v4  
 
The graph  G with  
V(G) = {v1, v2, v3, v4, v5} and  
E(G) = {e1, e2, e3, e4, e5, e6} 
SOME TERMINOLOGY: 
 

e3 e2

e1

e5

e4

v1 v2

v3
e6

v5

v4  
 
1. An edge connects either one or two vertices called its endpoints (edge e1 connects                                 
    vertices v1 and v2 described as {v1, v2} i.e v1 and v2 are the endpoints of an edge e1). 
2. An edge with just one endpoint is called a loop. Thus a loop is an edge that connects a           
    vertex to itself (e.g., edge e6 makes a loop as it has only one endpoint v3). 
3. Two vertices that are connected by an edge are called adjacent; and a vertex that is               
    an endpoint of a loop is said to be adjacent to itself. 
4. An edge is said to be incident on each of its endpoints(i.e. e1 is incident on v1 and v2 ). 
5. A vertex on which no edges are incident is called isolated (e.g., v5) 
6. Two distinct edges with the same set of end points are said to be parallel (i.e. e2 & e3). 
 
 



39- Introduction to graphs  VU                       
 
 
 

 
© Copyright Virtual University of Pakistan 

281

EXAMPLE: 
                    Define the following graph formally by specifying its vertex set, its edge set, 
and a table giving the edge endpoint function. 

v1 v2

v3

e1

e2

e3

v4

 
 
SOLUTION:        
                     Vertex Set = {v1, v2, v3, v4} 
          Edge Set = {e1, e2, e3} 
  
               Edge - endpoint function is: 
 

Edge Endpoint
e1 {v1, v2} 

e2 {v1, v3} 

e3 {v3} 

 
EXAMPLE: 
                    For the graph shown below 
(i) find all edges that are incident on v1; 
(ii)find all vertices that are adjacent to v3; 
(iii)find all loops; 
(iv)find all parallel edges; 
(v)find all isolated vertices; 

e1 e2

e3

e4

e5

e6

e7

v1

v2

v3

v4
v5

 
 
 
SOLUTION: 
(i)  v1 is incident with edges e1, e2 and e7 
(ii) vertices adjacent to v3 are v1 and v2 
(iii) loops are e1 and e3 
(iv) only edges e4 and e5 are parallel 
(v)  The only isolated vertex is v4 in this Graph. 
 
DRAWING PICTURE FOR A GRAPH: 
Draw picture of Graph H having vertex set {v1, v2, v3, v4, v5} and edge set {e1, e2, e3, e4} 
with edge endpoint function 
 



39- Introduction to graphs  VU                       
 
 
 

 
© Copyright Virtual University of Pakistan 

282

Edge Endpoint 

e1 {v1} 

e2 {v2,v3} 

e3 {v2,v3} 

e4 {v1,v5} 

 
SOLUTION: 
                     Given V(H) = {v1, v2, v3, v4, v5}  
and     E(H) = {e1, e2, e3, e4} 
with edge endpoint function  

 
                                               SIMPLE GRAPH 
 
A simple graph is a graph that does not have any loop or parallel edges.  
 
EXAMPLE: 

e1

e2 e3 e4
v5

v1 v2

v3v4  
It is a simple graph H 
V(H) = {v1, v2, v3, v4, v5}  &   E(H) = {e1, e2, e3, e4} 
 
EXERCISE: 
                     Draw all simple graphs with the four vertices {u, v, w, x} and two edges, 
one of which is {u, v}. 
 
SOLUTION: 
                     There are C(4,2) = 6 ways of choosing two vertices from 4 vertices. These 
edges may be listed as:  
                       {u,v},{u,w},{u,x},{v,w}, {v,x},{w,x} 
One edge of the graph is specified to be {u,v}, so any of the remaining five from this list 
may be chosen to be the second edge. This required graphs are: 
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u v

w x

1.

                                   

u

w

v

x

2.

 

u

w

v

x

3.

                                     

u

w

v

x

4.

 

u

w

v

x

5.

 
 
DEGREE OF A VERTEX: 
Let G be a graph and v a vertex of G. The degree of v, denoted deg(v), equals the number 
of edges that are incident on v, with an edge that is a loop counted twice. 
Note:(i)The total degree of G is the sum of the degrees of all the vertices of G. 
(ii) The degree of a loop is counted twice. 
 
EXAMPLE: 
                    For the graph shown 

e1 e2

v2

v3

e3

. v1

 
deg (v1) = 0, since v1 is isolated vertex. 
deg (v2) = 2, since v2 is incident on e1 and e2 . 
deg (v3) = 4, since v3 is incident on e1,e2 and the loop e3. 
Total degree of G = deg(v1) + deg(v2) + deg(v3) 
     = 0 + 2 + 4 
     = 6 
 
REMARK: 
                  The total degree of G, which is 6, equals twice the number of edges of G, 
which is 3. 
 
THE HANDSHAKING THEOREM: 
If G is any graph, then the sum of the degrees of all the vertices of G equals twice the 
number of edges of G. 
Specifically, if the vertices of G are v1, v2, …, vn, where n is a positive integer, then 
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the total degree of G  = deg(v1) + deg(v2) + … + deg(vn) 
   = 2 . (the number of edges of G) 
PROOF: 
              Each edge “e” of G connects its end points vi and vj. This edge, therefore 
contributes 1 to the degree of vi and 1 to the degree of vj. 
If  “e” is a loop, then it is counted twice in computing the degree of the vertex on which it 
is incident. 
Accordingly, each edge of G contributes 2 to the total degree of G. 
Thus, 
 the total degree of G = 2. (the number of edges of G) 
 
COROLLARY: 
                           The total degree of G is an even number 
 
 
EXERCISE: 
                    Draw a graph with the specified properties or explain why no such graph 
exists. 
(i)  Graph with four vertices of degrees 1, 2, 3 and 3 
(ii) Graph with four vertices of degrees 1, 2, 3 and 4 
(iii)Simple graph with four vertices of degrees 1, 2, 3 and 4 
 
SOLUTION: 
(i) Total degree of graph  = 1 + 2 + 3 + 3 
    = 9  an odd integer 
Since, the total degree of a graph is always even, hence no such graph is possible. 
Note:As we know that “for any graph,the sum of the degrees of all the vertices of G 
equals twice the number of edges of G or the total degree of G is an even number”. 
 
(ii) Two graphs with four vertices of degrees 1, 2, 3 & 4 are 

a b

cd

1.

                         or                       

a

b

c

d

2.

 
 
The vertices a, b, c, d have degrees 1,2,3, and 4 respectively(i.e graph exists). 
 
(iii) Suppose there was a simple graph with four vertices of degrees 1, 2, 3, and 4. Then 
the vertex of degree 4 would have to be connected by edges to four distinct vertices other  
than itself because of the assumption that the graph is simple (and hence has no loop or 
parallel edges.) This contradicts the assumption that the graph has four vertices in total.  
Hence there is no simple graph with four vertices of degrees  1, 2, 3, and 4, so simple 
graph is not possible in this case. 
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EXERCISE: 
                     Suppose a graph has vertices of degrees 1, 1, 4, 4 and 6. How many edges 
does the graph have? 
 
SOLUTION: 
                      The total degree of graph = 1 + 1 + 4 + 4 + 6 
                   = 16 
            Since, the total degree of graph = 2.(number of edges of graph)     [by using 
Handshaking theorem ] 
                                    ⇒         16   = 2.(number of edges of graph) 
 
              ⇒  Number of edges of graph =  
 
EXERCISE: 
                     In a group of 15 people, is it possible for each person to have exactly 3 
friends?  
 
SOLUTION: 
                      Suppose that in a group of 15 people, each person had exactly 3 friends. 
Then we could draw a graph representing each person by a vertex and connecting two 
vertices by an edge if the corresponding people were friends. 
But such a graph would have 15 vertices each of degree 3, for a total degree of 45 (not 
even) which is not possible.  
Hence, in a group of 15 people it is not possible for each to have exactly three friends. 
 
COMPLETE GRAPH: 
A complete graph on n vertices is a simple graph in which each vertex is connected to 
every other vertex and is denoted by Kn (Kn means that there are n vertices). 
The following are complete graphs K1, K2,K3, K4 and K5. 

                              

v1 v2

K2                

v1

v2 v3  
 

v1

v2
v3

v4

K4                     

v1

v2

v3 v4

v5

K5  
 
EXERCISE: 
                    For the complete graph Kn, find 
(i) the degree of each vertex 
(ii)the total degrees 
(iii)the number of edges 
 
 

16 8
2

=

K1

v1
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SOLUTION: 
 
(i)   Each vertex v is connected to the other (n-1) vertices in Kn; hence deg (v) = n - 1 for 
every v in Kn. 
 
(ii)  Each of the n vertices in Kn has degree n - 1; hence, the total degree in  
Kn = (n - 1) + (n - 1) + … + (n - 1)                  n times 
     = n (n - 1) 
 
(iii)  Each pair of vertices in Kn determines an edge, and there are C(n, 2) ways of 
selecting two vertices out of n vertices. Hence, 
Number of edges in Kn = C(n, 2) 
 
  
 
Alternatively, 
The total degrees in  graph Kn = 2 (number of edges in Kn) 
⇒ n(n-1)  = 2(number of edges in Kn) 
⇒   
          Number of edges in Kn 
 
REGULAR GRAPH: 
A graph G is regular of degree k or k-regular if every vertex of G has degree k. 
In other words, a graph is regular if every vertex has the same degree. 
Following are some regular graphs. 
 
 
 

(i) 0-regular                                                        (ii) 1-regular         
 
 
 

(iii) 2-regular  
 
REMARK: The complete graph Kn is (n-1) regular. 
 
 
 
 
 

( 1)
2

n n −
=

( 1)
2

n n −
=
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EXERCISE:     
                    Draw two 3-regular graphs with six vertices. 
 
SOLUTION: 

a b

c

de

f

a

b

c

d
e

f

 
BIPARTITE GRAPH: 
A bipartite graph G is a simple graph whose vertex set can be partitioned into two 
mutually disjoint non empty subsets A and B such that the vertices in A may be 
connected to vertices in B, but no vertices in A are connected to vertices in A and no 
vertices in B are connected to vertices in B. 
The following are bipartite graphs 

A B
v1

v2

v3

v4

v5

v6

A

B

v1 v2 v3

v4 v5  
 
DETERMINING BIPARTITE GRAPHS: 
                                                                      The following labeling procedure determines 
whether a graph is bipartite or not. 
1. Label any vertex a 
2. Label all vertices adjacent to a with the label b. 
3. Label all vertices that are adjacent to a vertex just labeled b with label a. 
4. Repeat steps 2 and 3 until all vertices got a distinct label  (a bipartite graph) or there is 
a conflict i.e., a vertex is labeled with a and b (not a bipartite graph). 
 
 
EXERCISE: 
                     Find which of the following graphs are bipartite. Redraw the bipartite graph 
so that its bipartite nature is evident. 

 
 
 
 
 
SOLUTION: 
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(i)  

b b

a a,b         (conflict)  
 
The graph is not bipartite. 
(ii) ab

ba

b

 
By labeling procedure, each vertex gets a distinct label. Hence the graph is bipartite. To 

redraw the graph we mark labels a’s as a1, a2and b’s as b1, b2, 

a1b3

b2a2

b1

 
Redrawing graph with bipartite nature evident. 

a1

a2

b1

b2

b3

a1b3

b2a2

b1

 
 
 
 
COMPLETE BIPARTITE GRAPH: 
A complete bipartite graph on (m+n) vertices denoted Km,n is a simple graph whose 
vertex set can be partitioned into two mutually disjoint non empty subsets A and B 
containing m and n vertices respectively, such that each vertex in set A is connected 
(adjacent) to every vertex in set B, but the vertices within a set are not connected. 

K2,3 K3,3  
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Lecture# 40    Paths and Circuits 
PATHS AND CIRCUITS 
 
KONIGSBERG BRIDGES PROBLEM 
 

A

B

D

C

 
 
It is possible for a person to take a walk around town, starting and ending at the same 
location and crossing each of the seven bridges exactly once? 
 

A

B

CD

A

B

D

C

 
 
 Is it possible to find a route through the graph that starts and ends at some vertex A, B, C 
or D and traverses each edge exactly once? 
 
Equivalently: 
                      Is it possible to trace this graph, starting and ending at the same point, 
without ever lifting your pencil from the paper? 
 
DEFINITIONS: 
                           Let G be a graph and let v and w be vertices in graph G. 
 
1.  WALK 
                 A walk from v to w is  a finite alternating sequence of adjacent vertices and 
edges of G.  
Thus a walk has the form     
                                       v0e1v1e2 … vn-1envn 
where the v’s represent vertices, the e’s represent edges v0=v , vn=w, and for all  
i = 1, 2 … n, vi-1 and vi are endpoints of ei. 
 
 The trivial walk from v to v consists of the single vertex v. 
 
2.  CLOSED WALK 
                                  A closed walk is a walk that starts and ends at the same vertex. 
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3.  CIRCUIT 
                    A circuit is a closed walk that does not contain a repeated edge. Thus a 
circuit is a walk of the form 
           v0e1v1e2 … vn-1 en vn 
where v0 = vn and all the ei,s are distinct. 
 
4.  SIMPLE CIRCUIT 
                                     A simple circuit is a circuit that does not have any other repeated 
vertex except the first and last. 
 Thus a simple circuit is a walk of the form 
                                   v0e1v1e2 … vn-1envn 
where all the ei,s are distinct and all the vj,s are distinct except that v0 = vn 
 
5.  PATH 
               A path from v to w is a walk from v to w that does not contain a repeated edge.  
Thus a path from v to w is a walk of the form 
                                                  v = v0e1v1e2 … vn-1envn = w  
where all the ei,s are distinct (that is ei ≠ ek for any i ≠k). 
 
6.  SIMPLE PATH 
                               A simple path from v to w is a path that does not contain a repeated 
vertex.  
Thus a simple path is a walk of the form 
                                           v = v0e1v1e2 … vn-1envn= w  
where all the ei,s are distinct and all the vj,s are also distinct (that is, vj ≠ vm for any  
j ≠ m). 
 
SUMMARY 
 

 Repeated 
Edge 

Repeated 
Vertex 

Starts and Ends at Same Point 

walk allowed Allowed allowed 
closed walk allowed Allowed yes(means, where it starts also ends at that 

point) 
circuit no Allowed yes 
simple circuit no first and last 

only 
yes 

path no Allowed allowed 
simple path no no No 
 
EXERCISE: 
                     In the graph below, determine whether the following walks are paths, simple 
paths, closed walks, circuits, simple circuits, or are just walks. 

e10
v0

v1

v2

v3

v4v5

e1 e2 e3

e4e5

e6

e7
e8

e9

 
(a) v1e2v2e3v3e4v4e5v2e2v1e1v0 
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(b) v1v2v3v4v5v2 
(c) v4v2v3v4v5v2v4 
(d) v2v1v5v2v3v4v2 
(e) v0v5v2v3v4v2v1 
(f) v5v4v2v1 
 
SOLUTION: 
(a) v1e2v2e3v3e4v4e5v2e2v1e1v0 

v0

v1
e1 e2 v2

e3

v3

e5

v4v5

e4

(a)

 
This graph starts at vertex v1,then goes to v2 along edge e2,and moves continuously, at the  
end it goes from v1 to v0 along e1.Note it that the vertex v2  and the edge e2 is repeated 
twice, and starting and ending, not at the same points.Hence The graph is just a walk. 
 
(b) v1v2v3v4v5v2 

v0

v1

v2

v3

v4v5  
In this graph vertex v2  is repeated twice.As no edge is repeated so the graph is a path. 
 
(c) v4v2v3v4v5v2v4 
  

v0

v1

v2

v3

v4v5  
As vertices v2  & v4 are repeated and graph starts and ends at the same point v4,also the 
edge(i.e. e5 )connecting v2  & v4 is repeated, so the graph is a closed walk. 

 
(d) v2v1v5v2v3v4v2 

v1

v2

v3

v4v5

v0

 
In this graph, vertex v2  is repeated and the graph starts and end at the same vertex (i.e. at 
v2) and no edge is repeated, hence the above graph is a circuit. 
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(e) v0v5v2v3v4v2v1 
  

v0

v1

v2

v3

v4v5   
Here vertex v2 is repeated and no edge is repeated so the graph is a path. 
 
(f) v5v4v2v1 
  

v0

v1

v2

v3

v4v5  
Neither any vertex nor any edge is repeated so the graph is a simple path. 
 
CONNECTEDNESS: 
Let G be a graph. Two vertices v and w of G are connected if, and only if, there is a walk 
from v to w. The graph G is connected if, and only if, given any two vertices v and w in 
G, there is a walk from v to w. Symbolically: 
G is connected ⇔ ∀ vertices v, w ∈ V (G), ∃ a walk from v to w: 
 
EXAMPLE: 
                    Which of the following graphs have a connectedness? 
 
 

v2

v1

v1

v1

v1

v2 v2

v2

v3

v3

v3

v3
v4

v4

v4

v4

v5

v6
v6

v6

v6

v5

v5

v7v8

(a) (b)

(c) (d)

v5

 
 
 
EULER CIRCUITS 
 
DEFINITION: 
                         Let G be a graph. An Euler circuit for G is a circuit that contains every 
vertex and every edge of G. That is, an Euler circuit for G is sequence of adjacent vertices 
and edges in G that starts and ends at the same vertex uses every vertex of G at least once, 
and used every edge of G exactly once. 
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THEOREM: 
A graph G has an Euler circuit if, and only if, G is connected and every vertex of G has an 
even degree. 
 
KONIGSBERG BRIDGES PROBLEM 
 

A

B

CD

A

B

D

C

 
We try to solve Konigsberg bridges problem by Euler method. 
Here deg(a)=3,deg(b)=3,deg(c)=3 and deg(d)=5 as the vertices have odd degree so there 
is no possibility of an Euler circuit.  
 
EXERCISE: 
                    Determine whether the following graph has an Euler circuit. 

v1
v0

v2

v3
v4

v5

v6

v7

v8
v9  

 
 
SOLUTION: 
                      As   deg (v1) =5, an odd degree so the following graph has not an Euler 
circuit.  
 
EXERCISE: 
                      Determine 
whether the following 
graph has Euler circuit. 
 

SOLUTION: 
                     From above clearly     deg(a)=2, deg(b)=4, deg(c)=4, deg(d)=4, deg(e)=2, 
deg(f)=4, deg(g)=4, deg(h)=4, deg(i)=4 
Since the degree of each vertex is even, and the graph has Euler Circuit. One such circuit 
is: 
         a b c d e f g d f i h c g h b i a 
 

a

b
c d

ef

gh

i
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EULER PATH 
DEFINITION: 
                         Let G be a graph and let v and w be two vertices of G. An Euler path from 
v to w is a sequence of adjacent edges and vertices that starts at v, end and w, passes 
through every vertex of G at least once, and traverses every edge of G exactly once. 

COROLLARY 
Let G be a graph and let v and w be two vertices of G. There is an Euler path from v to w 
if, and only if, G is connected, v and w have odd degree and all other vertices of G have 
even degree. 

HAMILTONIAN CIRCUITS 
 
DEFINITION: 
                         Given a graph G, a Hamiltonian circuit for G is a simple circuit that 
includes every vertex of G. That is, a Hamiltonian circuit for G is a sequence of adjacent 
vertices and distinct edges in which every vertex of G appears exactly once. 
EXERCISE: 
                     Find Hamiltonian Circuit for the following graph. 

a

b

c

d

e

fg

h

 
 
 
SOLUTION: 
                      The Hamiltonian Circuit for the following graph is: 
                                                                                                        a b d e f c g h a  
Another Hamiltonian Circuit for the following graph could be: 
                                                                                                   a b c d e f g h a 
 
PROPOSITION: 
                            If a graph G has a Hamiltonian circuit then G has a sub-graph H with 
the following properties: 
1. H contains every vertex G 
2. H is connected 
3. H has the same number of edges as vertices 
4. Every vertex of H has degree 2 
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EXERCISE: 
                    Show that the following graph does not have a Hamiltonian circuit. 
 

a

b

c

d

e

fg  
 
 
Here deg(c)=5,if we remove 3 edges from vertex c  then deg(b)< 2 , deg(g)< 2  
or deg(f)< 2,deg(d)< 2. 
It means that this graph does not satisfy the desired properties as above, so the graph does 
not have a Hamiltonian circuit.  
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Lecture# 41    Matrix Representation of Graphs 
MATRIX REPRESENTATIONS OF GRAPHS 
 
MATRIX: 
An m × n matrix A over a set S is a rectangular array of elements of S arranged into m 
rows and n columns: 
 
 
 
            ← ith row of A 
 
 
 
 
 
  ↑ 
                       jth column of A 
Briefly, it is written as: 
  A = [aij ] m×n 
EXAMPLE: 
 
 
  
 
 
A is a matrix having 3 rows and 4 columns. We call it a 3 × 4 matrix, or matrix of  
size 3 × 4(or we say that a matrix having an order 3 × 4). 
Note it that 
a11 = 4 (11 means 1st row and 1st column), a12 = -2 (12 means 1st row  and 2nd  column),       
a13 = 0,                  a14 = 6 
a21 = 2,                    a22 = -3,       a23 = 1, a24 =9   etc. 
 
SQUARE MATRIX: 
A matrix for which the number of rows and columns are equal is called a square matrix. 
A square matrix A with m rows and n columns (size m × n) but m=n (i.e of order n × n)  
has the form: 
 
 
 
 
                                                                                                             Diagonal entries 
 
 
Note: 
        The main diagonal of A consists of all the entries  
                                     a11, a22, a33, …, aii,…, an n 
 
 

11 12 1 1

21 22 2 2

1 2

1 2

j n

j n

i i ij in

m m mj mn

a a a a
a a a a

A
a a a a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" "
" "

# # # #
" "

# # # #
" "

4 2 0 6
2 3 1 9
0 7 5 1

A
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

11 12 1 1

21 22 2 2

1 2

1 2

i n

i n

i i ii in

n n ni nn

a a a a
a a a a

A
a a a a

a a a a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

" "
" "

# # # #
" "

# # # #
" "
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TRANSPOSE OF A MATRIX: 
The transpose of a matrix A of size m × n, is the matrix denoted by At of size n × m, 
obtained by writing the rows of A, in order, as columns.(Or we can say that transpose of 
a matrix means “write the rows instead of columns or write the columns instead of rows”. 
Thus if 
 
 
 
 
 
  
 
 
EXAMPLE: 
 
 
 
 
  
Then 
 
 
 
  
 
 
SYMMETRIC MATRIX: 
A square matrix A = [aij] of size n × n is called symmetric if, and only if, At= A 
i.e., for all i, j = 1, 2, …, n,  aij = aji 
EXAMPLE: 
 
 
 
 
  
 
 
  
 
Note that Bt = B, so that B is a symmetric matrix. 
 
MATRIX MULTIPLICATION: 
Suppose A and B are two matrices such that the number of columns of A is equal to the 
number of rows of B, say A is an m × p matrix and B is a p × n matrix. Then the product 
of A and B, written AB, is the m × n matrix whose ijth entry is obtained by multiplying 
the elements of the ith row of A by the corresponding elements of the jth column of B and 
then adding; 
 
 

11 12 1 11 21 1

21 22 2 12 22 2

1 2 1 2

,

n m

n mt

m m mn n n mn

a a a a a a
a a a a a a

A then A

a a a a a a

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

" "
" "

# # # # # #
" "

4 2 0 6
2 3 1 9
0 7 5 1

A
−⎡ ⎤

⎢ ⎥= −⎢ ⎥
⎢ ⎥−⎣ ⎦

4 2 0
2 3 7
0 1 5
6 9 1

tA

⎡ ⎤
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥−⎣ ⎦

4 2 0
1 3 7

Let         , and     2 3 1
5 2 9

0 1 5
A B

⎡ ⎤
⎡ ⎤ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

1 5 4 2 0
Then         3 2 , and     2 3 1

7 9 0 1 5

t tA B
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
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where 
 
 
 
REMARK: 
                If the number of columns of A is not equal to the number of rows of B, then the    
product AB is not defined. 
EXAMPLE: 
                    Find the product AB and BA of the matrices 
 
 
  
 
SOLUTION: 
                     Size of A is 2 × 2 and of B is 2 × 3, the product AB is defined as a 2 × 3 
matrix. But BA is not defined, because no. of columns of B = 3 ≠ 2 = no. of rows of A. 
 
 
  
 
 
 
 
  
EXERCISE: 
                    Find AAt and AtA, where 
 
 
  
 
 
SOLUTION: 
                     At is obtained from A by rewriting the rows of A as columns: 
 
i.e 
 
 
Now 
 
 
 

11 12 1 11 1 1
11 1 1

21 2 2
1 2 1

p1
2 1

b
b

  

b

p j n
j n

j n
i i ip i ij in

pj pn
mi m mp m mj mn

a a a c c c
b b
b b

a a a c c c

b b
a a a c c c

⎡ ⎤ ⎡ ⎤
⎡ ⎤⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥=
⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

" " "
" "

# # # #
" "

" " "
#

# # # #
" "

" " "

1 1 2 2
1

p

ij i j i j ip pj ik kj
k

c a b a b a b a b
=

= + + + = ∑"

1 3 2 0 4
and

2 1 3 2 6
A B

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

1 3 2 0 4
  

2 1 3 2 6
AB

−⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

(1)(2) (3)(3) (1)(0) (3)(6) (1)( 4) (3)(6) 11 6 14
(2)(2) ( 1)(3) (2)(0) ( 1)( 2) (2)( 4) ( 2)(6) 1 2 14

+ + − + −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥+ − + − − − + − −⎣ ⎦ ⎣ ⎦

1 2 0
3 1 4

A ⎡ ⎤
= ⎢ ⎥−⎣ ⎦

1 3
2 1
0 4

tA
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

1 3
1 2 0 1 4 0 3 2 0 5 1

  2 -1
3 1 4 3 2 0 9 1 16 1 26

0 4

tAA
⎡ ⎤

+ + − +⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥− − + + +⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦
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and 
 
 
 
 
 
 
 
 
 

 
 
 

ADJACENCY MATRIX OF A GRAPH: 
Let G be a graph with ordered vertices v1, v2,..., vn.The adjacency matrix of G is the 
matrix A = [aij] over the set of non-negative integers such that 
  aij = the number of edges connecting vi and vj  for all i, j = 1, 2, …, n. 
 
OR 
 
The adjancy matrix say A= [aij] is also defined as  
 

,1 { }

0
i j

ij

if v v is an edgeof G
a

otherwise
⎧

= ⎨
⎩

 

 
EXAMPLE: 
                   A graph with it’s adjacency matrix is shown. 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1001
0021
0200
1100

          

4

3

2

1

4321

v
v
v
v

A

vvvv

e2

v1

e1

v4

e3

e4

v3

v2

e5

 
 
 
Note that the nonzero entries along the main diagonal of A indicate the presence of loops  
and entries larger than 1 correspond to parallel edges. 
Also note A is a symmetric matrix. 
 
EXERCISE: 
                    Find a graph that have the following adjacency matrix. 
 
 
 
  
 
 

1 3
1 2 0

2 1   
3 1 4

0 4

1 9 2 3 0 12
         2 3 4 1 0 4

0 12 0 4 0 16

10 1 12
        1 5 4

12 4 16

tA A
⎡ ⎤

⎡ ⎤⎢ ⎥= − ⎢ ⎥⎢ ⎥ −⎣ ⎦⎢ ⎥⎣ ⎦
+ − +⎡ ⎤

⎢ ⎥= − + −⎢ ⎥
⎢ ⎥+ − +⎣ ⎦

−⎡ ⎤
⎢ ⎥= − −⎢ ⎥
⎢ ⎥−⎣ ⎦

0 2 0
2 1 0
0 0 1

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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SOLUTION: 
                     Let the three vertices of the graph be named v1, v2 and v3. We label the 
adjacency matrix across the top and down the left side with these vertices and draw the 
graph accordingly(as from v1  to v2  there is a value “2”,it means that two parallel edges 
between v1  and v2  and same condition occurs between v2 and v1  and the value  “1” 
represent  the loops of v2  and v3 ). 
 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

100
012
020

    

3

2

1

321

v
v
v

vvv v1
v2

v3

 
DIRECTED GRAPH: 
A directed graph or digraph, consists of two finite sets: a set V(G) of vertices and a set 
D(G) of directed edges, where each edge is associated with an ordered pair of vertices 
called its end points. 
If edge e is associated with the pair (v, w) of vertices, then e is said to be the directed 
edge from v to w and is represented by drawing an arrow from v to w. 
 
EXAMPLE OF A DIGRAPH: 

e1

v1 e2
v4

e6

e5

e3

v2

e4

v3
 

 
ADJACENCY MATRIX OF A DIRECTED GRAPH: 
Let G be a graph with ordered vertices v1, v2, …, vn. 
The adjacency matrix of G is the matrix A = [aij] over the set of non-negative integers 
such that 
              aij = the number of arrows from vi to vj  for all i, j = 1, 2, …, n. 
 
EXAMPLE: 
                   A directed graph with its adjacency matrix is shown 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0100
1001
0100
0101

          

4

3

2

1

4321

v
v
v
v

A

vvvv
e1

v1 e2
v4

e6

e5

e3

v2

e4

v3
is the adjacency  matrix 
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EXERCISE: 
                    Find directed graph that has the adjacency matrix 
 
 
 
  
SOLUTION: 
                    The 4 × 4 adjacency matrix shows that the graph has 4 vertices say v1, v2, v3 
and v4 labeled across the top and down the left side of the matrix.  
 
 
 
 
A corresponding directed graph is 
 
v1

v4

v2

v3

 
It means that a loop exists from v1 and v3 , two arrows go from v1 to v4  and two from v3 
and v2  and one arrow go from  v1to v3 , v2 to v3 , v3 to v4, v4 to v2 and v3.     

 
THEOREM 
If G is a graph with vertices v1, v2, …,vm and A is the adjacency matrix of G, then for 
each positive integer n,               
the ijth entry of An  = the number of walks of length n from vi to vj 
for all integers i,j = 1, 2, …, n 
 
PROBLEM: 
 
 
 
  
be the adjacency matrix of a graph G with vertices v1, v2, and v3. Find 
(a) the number of walks of length 2 from v2 to v3 
(b) the number of walks of length 3 from v1 to v3 
Draw graph G and find the walks by visual inspection for (a) 
 
SOLUTION: 
(a) 
                                                                  it shows the entry (2,3) from v2 to v3 
 
 
Hence, number of walks of length 2(means “multiply matrix A two times”) from  
v2 to v3 = the entry at (2,3) of A2  = 2 
 
 

1 0 1 2
0 0 1 0
0 2 1 1
0 1 1 0

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 2 3 4

1

2

3

4

          
1 0 1 2
0 0 1 0
0 2 1 1
0 1 1 0

v v v v
v
v

A
v
v

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

1 1 2
Let        1 0 1

2 1 0
A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

2

1 1 2 1 1 2 6 3 3
1 0 1   1 0 1 3 2 2
2 1 0 2 1 0 3 2 5

A AA
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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(b) 
                                                                        it shows the entry (1,3) from v1 to v3 
 
 
Hence, number of walks of length 3 from v1 to v3 = the entry at (1,3) of A3 = 15 
Walks from v2 to v3 by visual inspection of graph is  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

012
101
211

A

e1
e2

e3
e4

e5

v1
v2

v3  
so in part (a)two Walks of length 2 from v2 to v3 are 
(i)  v2 e2 v1 e3 v3     (by using the above theorem). 
(ii) v2 e2 v1 e4 v3 
INCIDENCE MATRIX OF  A SIMPLE GRAPH: 
Let G be a graph with vertices v1, v2, …, vn and edges e1, e2, …, en. The incidence matrix 
of G is the matrix M = [mij] of size n × m defined by 
 
 
 
  
 
EXAMPLE: 
                    A graph with its incidence matrix is shown. 

1 2 3 4 5

1

2

3

4

              e
1 0 1 0 0
0 0 0 1 1
0 0 1 1 1
1 1 0 0 0

e e e e
v
v

M
v
v

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦e2

v1

e1

v4

e3

e4

v3

v2

e5

 
 
 
 
REMARK: 
                  In the incidence matrix 
1. Multiple edges are represented by columns with identical entries (in this matrix e4 & e5 
are multiple edges). 
2. Loops are represented using a column with exactly one entry equal to 1, corresponding 
to the vertex that is incident with this loop and other zeros (here e2 is only a loop). 

3 2

1 1 2 6 3 3 15 9 15
1 0 1   3 2 2 9 5 8
2 1 0 3 2 5 15 8 8

A AA
⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

1 if the vertex  is incident on the edge 
0 otherwise

i j
ij

v e
m ⎧

= ⎨
⎩
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v1

v2

v3v4

v5
e1

e2

e3

e4

e5

G’

Lecture# 42   Isomorphism of graphs 
ISOMORPHISM OF GRAPHS 
 
 
Here we have a graph    
 
                                                  
 
Which can also be defined as     
 
 
 
 
Its vertices and edges can be written as: 
V(G) = {v

1
, v

2
, v

3
, v

4
, v

5
}, E(G) = {e

1
, e

2
, e

3
, e

4
, e

5
} 

Edge endpoint function is: 
 

Edge Endpoints
E1 {v1,v2} 
E2 {v2,v3} 
E3 {v3,v4} 
E4 {v4,v5} 
E5 {v5,v1} 

 
 
        Another graph G’ is  

 
Edge endpoint function of G is:                                        Edge endpoint function of G’ is: 
 

Edge Endpoints 
e

1
 {v

1
,v

3
} 

e
2
 {v

2
,v

4
} 

e
3
 {v

3
,v

5
} 

e
4
 {v

1
,v

4
} 

e
5
 {v

2
,v

5
} 

 
Two graphs (G and G’) that are the same except for the labeling of their vertices are not 
considered different. 
 
 

Edge Endpoints 
e

1
 {v

1
,v

2
} 

e
2
 {v

2
,v

3
} 

e
3
 {v

3
,v

4
} 

e
4
 {v

4
,v

5
} 

e
5
 {v

5
,v

1
} 

v1

v2

v3v4

v5

e1

e2

e3

e4

e5

v1

v4

v2v5

v3
e1

e4

e2

e5

e3

v1

v2

v3v4

v5

e1

e2

e3

e4

e5
G
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GRAPHS OF EDGE POINT FUNCTIONS 
 
Edge point function of G is:                               Edge point function of G’ is: 
  

EdgeEndpoints 
e

1
 {v

1
,v

3
} 

e
2
 {v

2
,v

4
} 

e
3
 {v

3
,v

5
} 

e
4
 {v

1
,v

4
} 

e
5
 {v

2
,v

5
} 

 
Note it that the graphs G and G’ are looking different because in G the end points of e

1
are 

v
1
,v

2 
but in G’

  
are v

1
, v

3  
etc.  

 
Buts G’ is very similar to G ,if the vertices and edges of G’

 
 are relabeled by the function 

shown below, then G’ becomes same as G:  
  

v1

v2

v3

v4

v5

v1

v2

v3

v4

v5

e1

e2

e3

e4

e5

e1

e2

e3

e4

e5

Vertices of G Vertices of G’ edges of G edges of G’

 
 
It shows that if there is one-one correspondence between the vertices of G and G’, then 
also one-one correspondence between the edges of G and G’. 
 
ISOMORPHIC GRAPHS: 
Let G and G’ be graphs with vertex sets V(G) and V(G’) and edge sets E(G) and E(G’), 
respectively.  
G is isomorphic to G’ if, and only if, there exist one-to-one correspondences g: 
V(G)→V(G’) and h: E(G) →E(G’) that preserve the edge-endpoint functions of G  
and G’ in the sense that for all v ∈V(G) and e∈ E(G). 
v is an endpoint of e ⇔ g(v) is an endpoint of h(e). 
 
EQUIVALENCE RELATION: 
Graph isomorphism is an equivalence relation on the set of graphs. 
 
1. Graphs isomorphism is Reflexive (It means that the graph should be isomorphic to 
itself). 
 
2. Graphs isomorphism is Symmetric (It means that if G is isomorphic to G’ then G’ is 
also isomorphic to G). 
 
3. Graphs isomorphism is Transitive (It means that if G is isomorphic to G’ and G’ is 
isomorphic to G’’, then G is isomorphic to G’’). 
 

Edge Endpoints 
e

1
 {v

1
,v

2
} 

e
2
 {v

2
,v

3
} 

e
3
 {v

3
,v

4
} 

e
4
 {v

4
,v

5
} 

e
5
 {v

5
,v

1
} 
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ISOMORPHIC INVARIANT: 
A property P is called an isomorphic invariant if, and only if, given any graphs G and G’, 
if G has property P and G’ is isomorphic to G, then G’ has property P. 
 
THEOREM OF ISOMORPHIC INVARIANT: 
Each of the following properties is an invariant for graph isomorphism, where n, m and k 
are all non-negative integers, if the graph: 
1. has n vertices.  
2. has m edges.  
3. has a vertex of degree k. 
4. has m vertices of degree k. 
5. has a circuit of length k. 
6. has a simple circuit of length k. 
7. has m simple circuits of length k. 
8. is connected.    
9. has an Euler circuit. 
10. has a Hamiltonian circuit. 
 
DEGREE SEQUENCE: 
The degree sequence of a graph is the list of the degrees of its vertices in non-increasing 
order. 
 
EXAMPLE: 
                    Find the degree sequence of the following graph. 
a b

cd

e

 
SOLUTION: 
                     Degree of a = 2, Degree of b = 3, Degree of c = 1,  
                     Degree of d = 2, Degree of e = 0 
By definition, degree of the vertices of a given graph should be in decreasing (non-
increasing) order. 
Therefore   Degree sequence is: 3, 2, 2, 1, 0 
 
GRAPH ISOMORPHISM FOR SIMPLE GRAPHS: 
If G and G’ are simple graphs (means the “graphs which have no loops or parallel edges”) 
then G is isomorphic to G’ if, and only if, there exists a one-to-one correspondence (1-1 
and onto function) g from the vertex set V (G) of G to the vertex set  
V (G’) of G’ that preserves the edge-endpoint functions of G and G’ in the sense that for 
all vertices u and v of G, 
{u, v} is an edge in G ⇔ {g(u), g(v)} is an edge in G’. 
OR 
     You can say that with the property of one-one correspondence, u and v are adjacent in 
graph G ⇔ if g (u) and g (v) are adjacent in G’. 
 
 
 
 



42-Isomorphism of graphs      VU                      
 
 
 

 
© Copyright Virtual University of Pakistan 

306

Note: 
        It should be noted that unfortunately, there is no efficient method for checking that 
whether two graphs are isomorphic(methods are there but take so much time in 
calculations).Despite that there is a simple condition. Two graphs are isomorphic if they 
have the same number of vertices(as there is a 1-1 correspondence between the vertices of  
both the graphs) and the same number of edges(also vertices should have the same 
degree.  
 
EXERCISE: 
                    Determine whether the graph G and G’ given below are isomorphic. 
 

a

b c

de

m

n

o

p

q

G G’

 
 
SOLUTION: 
                     As both the graphs have the same number of vertices. But the graph G has 7 
edges and the graph G’ has only 6 edges. Therefore the two graphs are not isomorphic. 
 
Note: As the edges of both the graphs G and G’ are not same then how the one-one 
correspondence is possible ,that the reason the graphs G and G’ are not isomorphic. 

 
EXERCISE: 
                    Determine whether the graph G and G’ given below are isomorphic. 
 

a

b

c

d
e

m
n

o

pq

G G’

 
 
SOLUTION: 
                     Both the graphs have 5 vertices and 7 edges. The vertex q of G’ has degree 
5. However G does not have any vertex of degree 5 (so one-one correspondence is not 
possible). Hence, the two graphs are not isomorphic. 
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EXERCISE: 
                     Determine whether the graph G and G’ given below are isomorphic. 
 

G G’
a

b

c

d

e

f

u

v

w

x

y

z

 
 
 
SOLUTION: 
                     Clearly the vertices of both the graphs G and G’ have the same degree 
(i.e “2”) and having the same number of vertices and edges but isomorphism is not 
possible. As the graph G’ is a connected graph but the graph G is not connected due  
to have two components (eca and bdf). Therefore the two graphs are non isomorphic. 
EXERCISE: 
                    Determine whether the graph G and G’ given below are isomorphic. 
 
G G’

a

b

c

d

e

f

u

v

w

x

y

z

 
SOLUTION: 
                     Clearly G has six vertices, G’ also has six vertices. And the graph G has two 
simple circuits of length 3; one is abca and the other is defd. But G’ does not have any 
simple circuit of length 3(as one simple circuit in G’ is uxwv of length 4).Therefore the 
two graphs are non-isomorphic. 
Note: A simple circuit is a circuit that does not have any other repeated vertex except the 
first and last.  
 
EXERCISE: 
                     Determine whether the graph G and G’ given below are isomorphic. 
 

a b

cd

e f

gh

s t

uv

w x

yz

G G’
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SOLUTION: 
                     Both the graph G and G’ have 8 vertices and 12 edges and both are also 
called regular graph(as each vertex has degree 3).The graph G has two simple circuits of 
length 5; abcfea(i.e starts and ends at a) and cdhgfc(i.e starts and ends at c). But G’ does 
not have any simple circuit of length 5 (it has simple circuit tyxut,vwxuv of length 4 etc). 
Therefore the two graphs are non-isomorphic. 
 
EXERCISE: 
                    Determine whether the graph G and G’ given below are isomorphic. 
 

a b

c

de

f
u

v w

x

yz

G G’

 
 
SOLUTION: 
                      We note that all the isomorphism invariants seems to be true. 
We shall prove that the graphs G and G’ are isomorphic.  
 Here G has four vertices of degree “2” and two vertices of degree“3”. Similar case in G’. 
Also G and G’ have circuits of length 4.As a is adjacent to b and f in graph G.In graph G’ 
u is adjacent to v and z. And as a and u has degree 2 so both are mapped. And b mapped 
with v, f mapped with z(as both have the same degree also a is adjacent to f and u is to z), 
and as we moves further we get the 1-1 correspondence.  
 
Define a function  f: V(G) →V(G’) as follows. 
 

a
b
c
d
e
f

u
v
w
x
y
z

 
 
 
Clearly the above function is one and onto that is a bijective mapping. Note that I write 
the above mapping by keeping in mind the invariants of isomorphism as well as the fact 
that the mapping should preserve edge end point function. Also you should note that the 
mapping is not unique. 
 
f is clearly a bijective function. The fact that f preserves the edge endpoint functions of G 
and G’ is shown below. 
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Edges of G Edges of G’ 

{a, b} {u, v} = {g(a), g(b)} 

{b, c} {v, y} = {g(b), g(c)} 

{c, d} {y, x} = {g(c), g(d)} 

{d, e} {x, w} = {g(d), g(e)} 

{e, f} {w, z} = {g(e), g(f)} 

{a, f} {u, z} = {g(a), g(f)} 

{c, f} {y, z} = {g(c), g(f)} 

  
 
ALTERNATIVE SOLUTION:  
                                                   We shall prove that the graphs G and G’ are isomorphic.  
Define a function f: V(G) →V(G’) as follows. 
 

a b

c

de

f
u

v w

x

y

G G’

 
 

a

b

c

d

e

f

u

v

w

x

y

z
 

EXERCISE: 
                    Determine whether the graph G and G’ given below are isomorphic. 
 

s t

uv

w x

yz

G’a b

cd

e
f

g
h

G

 
 
SOLUTION: 
                      We shall prove that the graphs G and G’ are isomorphic. 
Clearly the isomorphism invariants seems to be true between G and G’. 
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Define a function  f: V(G) →V(G’) as follows. 
 

a
b
c
d
e
f
g
h

s
t
u
v
w
x
y
z

 
 
f is clearly a bijective function(as it satisfies conditions the one-one and onto function 
clearly). The fact that f preserves the edge endpoint functions of G and G’ is shown 
below. 

 
Edges of G Edges of G’ 
{a, b} {s, t} = {f(a), f(b)} 

{b, c} {t, u} = {f(b), f(c)} 
{c, d} {u, v} = {f(c), f(d)} 
{a,d} {s, v} = {f(a), f(d)} 
{a, f} {s, z} = {f(a), f(f)} 

{b, g} {t, y} = {f(b), f(g)} 
{c, h} {u, x} = {f(c), f(h)} 

{d, e} {v, w} = {f(d), f(e)} 
{e, f} {w, z} = {f(e), f(f)} 

{f, g} {z, y} = {f(f), f(g)} 
{g, h} {y, x} = {f(g), f(h)} 
{h, e} {x, w} = {f(h), f(e)} 
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EXERCISE: 
                    Find all non isomorphic simple graphs with three vertices. 
SOLUTION: 
                      There are four simple graphs with three vertices as given below(which are 
non-isomorphic simple graphs). 
 
 

a a bb c c
 

 
 
 

a

a

b

bc

c

 
 
EXERCISE: 
                    Find all non isomorphic simple connected graphs with three vertices. 
SOLUTION: 
                      There are two simple connected graphs with three vertices as given 
below(which are non-isomorphic connected simple graphs). 

a

bc

a b c

 
 
EXERCISE: 
                     Find all non isomorphic simple connected graphs with four vertices. 
 
SOLUTION: 
                     There are six simple connected graphs with four vertices as given below. 
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Lecture# 43    Planar graphs 
 
PLANAR GRAPHS 
GRAPH COLORING 
 
In this lecture, we will study that whether any graph can be drawn in the plane (means “a 
flat surface”) without crossing any edges. 
 

 
 
It is a graph on 4 vertices and written as K4. Each vertex is connected to every other 
vertex. 
Note it that here edges are crossed. Also the above graph can also be drawn as  
 
 
 
 
 
  
 
In this graph, note it that each vertex is connected to every other vertex, but no edge 
is crossed. 
 
Note: The graphs shown above are complete graphs with four vertices (denoted by K4). 
 
DEFINITION: 
                       A graph is called planar if it can be drawn in the plane without any edge 
crossed (crossing means the intersection of lines). Such a drawing is called a plane 
drawing of the graph. 
OR  
You can say that a graph is called planar in which the graph crossing number is “0”.  
 
EXAMPLES: 
 

 
 
The graphs given above are planar .In the first figure edges are crossed but it can be 
redrawn in second figure where edges are not crossed, so called planar. 
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It is also a graph on 4 vertices (written as K4) with no edge crossed, hence called planar.  
 
Note: The graphs given above are also complete graphs (except second; are those where 
each vertex is connected to every other vertex) on 4 vertices and is written as K4 . 
Note: Complete graphs are planar only for n ≤ 4. 
 
EXAMPLE:  
                     Show that the graph below is planar.  
 

w

z

a b

d

x

c

y  
 
SOLUTION: 
                     This graph has 8 vertices and 12 edges, and is called 3-cube and is denoted 
Q3. 
The above representation includes many "edge crossing." A plane drawing of the graph  
in which no two edges cross is possible and shown below. 
 
w

z

x

y

a b

d c

 
 
EXERCISE: 
                    Determine whether the graph below is planar. If so, draw it so that no edges 
cross. 
a b c

d e f  
SOLUTION: 
                     The graph given above is bipartite graph denoted by K3. It also has a circuit 
afcebda. This graph can be re-drawn as 
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a f

c

eb

d or

a f

c

eb

d

 
 
Hence the given graph is planar 
 
THEOREM: 
                  Show that K3,3 is not planar. 
 
PROOF: 

a b c

x y z  
 
Clearly it is a complete bipartite graph (means bipartite graph, but the vertices within a set 
are not connected) denoted by K3,3. Now K3,3 can be re-drawn as 

 
a z

x c

b y  
 
We re-draw the edge ay so that it does not cross any other edge like that. 
 

a z

x c

b y  
 
Note it that bz cannot be drawn without crossings. Hence, K3,3 is not planar. 
Similary if  ay can be drawn inside(i.e drawn with crossing) and bz drawn outside, then 
same result exits. 
 
THEOREM: 
                     Show that K5 is non-planar. 
PROOF:  
              Graph K5 (means a “complete graph” in which every vertex is connected to 
every other vertex) can be drawn as    
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z

y x

w

v

 
To show that K5  is non-planar, it can be re-drawn as  
                                                                 

z

y x

w

v

 
 
But still edges wy and zx contain the lines which crossed each other. Hence called non-
planar. 
 
DEFINITION: 
                       A plane drawing of a planar graph divides the plane into regions, including 
an unbounded region, called faces.  
The unbounded region is called the infinite face. 
 

f1

f2

f4

f3

f5

f6

 
 
Here we have 6 faces,7 vertices and 10 edges.f6 is the unbounded region or called the 
infinite face because f6 is outside of the graph.      
      

f1

f2

f3

f4

f5

f6

f7f8

 
 
In this graph, it has 8 faces,9 vertices and 14 edges. Here f5 is the infinite face or 
unbounded region.  
 
EULER’S FORMULA 
 
THEOREM: 
Let G be a connected planar simple graph with e edges and v vertices. Let f   be the 
number of faces in a plane drawing of G. Then  f = e – v + 2  
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EXERCISE: 
                     Suppose that a connected planar simple graph has 30 edges. If a plane 
drawing of this graph has 20 faces, how many vertices does this graph have? 
 
SOLUTION: 
         Given that e = 30, and f = 20. Substituting these values in the Euler’s 
Formula  f = e – v + 2 , we get 
                                   20 = 30 – v + 2 
Hence, 
                                    v = 30 – 20 + 2 = 12 
 
 
 
GRAPH COLORING 
 

B

A

C
D

E

F

G
A

B

C

D
E

 
 
We also have to face many problems in the form of maps (maps like the parts of the 
world), which have generated many results in graph theory. Note it that in any graph, 
many regions are there, but two adjacent regions can’t have the same color. And we have 
to choose a small number of color whenever possible.    
Given two graphs above, our problem is to determine the least number of colors that can 
be used to color the map so that no adjacent regions have the same color. 
In the first map given above, 4 colors are necessary, but three colors are not enough. In 
the second graph, 3 colors are necessary but 2 colors are not enough.  
 
 

B

A
C

D

E

F

G A B

C

D
E

 
 
As in the 1st graph, four colors (red, pink, green, blue) are used like that adjacent regions 
not have the same color. In 2nd graph, three colors (red, blue, green) are used in the same 
manner. 

HOW TO DRAW A GRAPH FROM A MAP: 
1. Each map in the plane can be represented by a graph. 
2. Each region is represented by a vertex (in 1st map as there are 7 regions, so 7 vertices 
are used in drawing a graph, similarly we can see 2nd map). 
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3. If the regions connected by these vertices have the common border, then edge connect 
two vertices. 
4. Two regions that touch at only one point are not adjacent. 
So apply these rules, we have (first graph drawn from first map given above, second 
graph from second map).  
 

A

B

C D
F

E

G
A

B

C

D

E

 
 
DEFINITION: 
 
1.   A coloring of a simple graph is the assignment of a color to each vertex of the graph 
so that no two adjacent vertices are assigned the same color. 
2.   The chromatic number of a graph is the least (minimum) number of colors for 
coloring of this graph. 
 
EXAMPLE: 
                    What is the chromatic number of the graphs G and H shown below? 
 

a

b e

g

f

d

c

a

b e

g

f

d

c

G H

 
SOLUTION: 
                     Clearly the chromatic number of G is 3 and chromatic number of H is 4(by 
using the above definition). 
In graph G, 
As vertices a, b and c are adjacent to each other so assigned different colors. So we assign 
red color to vertex a, blue to b and green to vertex c. Then no more colors we choose (due 
to above definition).Now vertex d must be colored red because it is adjacent to vertex 
b(with blue color) and c(with green color). And e must be colored green because it is 
adjacent to vertex b(blue color) and vertex d(red color). And f must be colored blue as it 
is adjacent to red and green color. At last,vertex g must be colored red as it is adjacent to 
green and blue color. 
Same process is used in Graph H. 
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a
Red

b Blue e Green

g Red

f Blue

d    Red

c Green

a
Red

b Blue e Green

f Blue

d    Red

c Green

G H

 
 
THE FOUR COLOR THEOREM: 
The chromatic number of a simple planar graph is no greater than four. 
APPLICATION OF GRAPH COLORING 
 
EXAMPLE: 
                    Suppose that a chemist wishes to store five chemicals a, b, c, d and e in 
various areas of a warehouse. Some of these chemicals react violently when in contact, 
and so must be kept in separate areas. In the following table, an asterisk indicates those 
pairs of chemicals that must be separated. How many areas are needed? 
 
 
 
 
 
 
 
 
SOLUTION:  
                     We draw a graph whose vertices correspond to the five chemicals, with two 
vertices adjacent whenever the corresponding chemicals are to be kept apart. 
 

a

b

ec

d

Red

Blue

Red
Green

Purple  
 
Clearly the chromatic number is 4 and so four areas are needed.  
 
 
 

* * *
* * * *
* * *
* * *

* * *

a b c d e
a
b
c
d
e

− −
−

− −
− −

− −
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Lecture# 44    Trees 
 
TREES 
 
APPLICATION AREAS: 
Trees are used to solve problems in a wide variety of disciplines. In computer science 
trees are employed to 
    1)   construct efficient algorithms for locating items in a list. 
    2)   construct networks with the least expensive set of telephone lines linking    
           distributed computers. 
    3)  construct efficient codes for storing and transmitting data. 
    4)  model procedures that are carried out using a sequence of decisions, which are    
         valuable in the study of sorting algorithms. 
 
TREE: 
A tree is a connected graph that does not contain any non-trivial circuit. (i.e. it is circuit-
free). 
 
A trivial circuit is one that consists of a single vertex. 
Examples of tree are  

TREE
 

 

TREE  
 
EXAMPLES OF NON TREES 
 

(a)  Graph with a circuit (b)  Disconnected graph  
 

.
TREE
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(c)  Graph with a circuit  
 
In graph (a), there exists circuit, so not a tree. 
In graph (b), there exists no connectedness, so not a tree. 
In graph (c), there exists a circuit (also due to loop), so not a tree (because trees have to 
be a circuit free). 

 

 

 

SOME SPECIAL TREES 
1. TRIVIAL TREE: 
                    A graph that consists of a single vertex is called a trivial tree or 
degenerate tree. 
 
2. EMPTY TREE 
                 A tree that does not have any vertices or edges is called an empty tree. 
 
3. FOREST 
       A graph is called a forest if, and only if, it is circuit-free. 
OR “Any non-connected graph that contains no circuit is called a forest.”  
Hence, it clears that the connected components of a forest are trees. 
 

A forest  
 
As in both the graphs above, there exists no circuit, so called forest. 
 
PROPERTIES OF TREES: 
1. A tree with n vertices has n - 1 edges (where n ≥0). 
2. Any connected graph with n vertices and n - 1 edges is a tree. 
3. A tree has no non-trivial circuit; but if one new edge (but no new vertex) is added to it, 
then the resulting graph has exactly one non-trivial circuit. 
4. A tree is connected, but if any edge is deleted from it, then the resulting graph is not 
connected. 
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5. Any tree that has more than one vertex has at least two vertices of degree 1. 
6. A graph is a tree iff there is a unique path between any two of its vertices. 
 
EXERCISE: 
                     Explain why graphs with the given specification do not exist. 
1. Tree, twelve vertices, fifteen edges. 
2. Tree, five vertices, total degree 10. 
 
SOLUTION: 
1. Any tree with 12 vertices will have 12 - 1 = 11 edges, not 15. 
2. Any tree with 5 vertices will have 5 - 1 = 4 edges. 
Since, total degree of graph = 2 (No. of edges) 
            = 2(4) = 8 
Hence, a tree with 5 vertices would have a total degree 8, not 10. 
 
EXERCISE: 
                     Find all non-isomorphic trees with four vertices. 
 
SOLUTION: 
                     Any tree with four vertices has (4-1=3) three edges. Thus, the total degree of 
a tree with 4 vertices must be 6 [by using total degree=2(total number of edges)]. 
Also, every tree with more than one vertex has at least two vertices of degree 1, so the 
only possible combinations of degrees for the vertices of the trees are 1, 1, 1, 3 and 1, 1, 
2, 2. 
The corresponding trees (clearly non-isomorphic, by definition) are 
 

and
 

 
EXERCISE: 
                     Find all non-isomorphic trees with five vertices. 
 
SOLUTION: 
                      There are three non-isomorphic trees with five vertices as shown (where 
every tree with five vertices has 5-1=4 edges). 
 

 

 
In part (a), tree has 2 vertices of degree ‘1’ and 3 vertices of degree ‘2’.  
In part (b), 3 vertices have degree ‘1’, 1 has degree ‘2’and 1 vertex has degree ‘3’. 
In part (c), possible combinations of degree are 1, 1, 1, 1, 4. 
 
 

(a)

(b)

(c)
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EXERCISE: 
                    Draw a graph with six vertices, five edges that is not a tree. 
SOLUTION: 
           Two such graphs are: 
 

 
 
First graph is not a tree; because it is not connected also there exists a circuit.  
Similarly, second graph not a tree.  
DEFINITION: 
                        A vertex of degree 1 in a tree is called a terminal vertex or a leaf and a 
vertex of degree greater than 1 in a tree is called an internal vertex or a branch vertex. 
EXAMPLE: 
                     The terminal vertices of the tree are v1, v2, v5, v6 and v8 and internal vertices 
are v3, v4, v7.                                                                                                                                                               

v1 v4

v2

v5

v7

v8v6

v3

 
 
ROOTED TREE: 
A rooted tree is a tree in which one vertex is distinguished from the others and is called 
the root. 
The level of a vertex is the number of edges along the unique path between it and the 
root. 
The height of a rooted tree is the maximum level to any vertex of the tree. 
The children of any internal vertex v are all those vertices that are adjacent to v and are 
one level farther away from the root than v. 
If w is a child of v, then v is called the parent of w. 
Two vertices that are both children of the same parent are called siblings. 
Given vertices v and w, if v lies on the unique path between w and the root, then v is an 
ancestor of w and w is a descendant of v. 
 
EXAMPLE: 

root
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We redraw the tree as and see what the relations are 
 

level 0

level 1

level 2

level 3

level 4

root

u

v w

Vertices in enclosed region
are descendants of u, which 
is an ancestor of each

v is a child of u
u is the parent of v
v and w are sublings
height = 4  

 
EXERCISE: 
                    Consider the rooted tree shown below with root v0 
a. What is the level of v8?  b. What is the level of v0? 
c. What is the height of this tree?   d. What are the children of v10? 
e. What are the siblings of v1? f. What are the descendants of v12? 
 

 
 
 
 
 
 
 
 
 
 
 

SOLUTION: 
                    As we know that “Level means  
 
 
the total number of edges along the unique path between it and the root”. 
(a). As v0 is the root so the level of  v8 (from the root v0 along the unique path) is 
3,because it covers the 3 edges.  
(b).The level of v0 is 0(as no edge cover from v0 to v0). 
(c).The height of this tree is 5. 
Note: As levels are 0, 1, 2, 3, 4, 5 but to find height we have to take the maximum level. 
(d).The children of v10 are v14, v15 and v16  . 
(e).The siblings of v1 are v3 , v4 , and v5.   
(f).The descendants of v12 are v17, v18, and v19.  
 
 
 

v7

v16v15v14

v10

v6

v2

v9
v13

v8

v5v4

v3

v1

v0

v19v18

v17

v12v11
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 BINARY TREE 
                          A binary tree is a rooted tree in which every internal vertex has at most 
two children.  
Every child in a binary tree is designated either a left child or a right child (but not both). 
A full binary tree is a binary tree in which each internal vertex has exactly two children. 
 
EXAMPLE: 
 

v

u

root

w

x

left subtree of w
right subtree of w  

 
 
v is the left child of u. 
 
 
 
THEOREMS: 
 
1. If k is a positive integer and T is a full binary tree with k  internal vertices, then T has a 
total of 2k + 1 vertices and has k + 1  terminal vertices. 
 
2. If T is a binary tree that has t terminal vertices and height h, then t ≤ 2

h 

Equivalently,   
  log2t ≤ h 
Note: The maximum number of terminal vertices of a binary tree of height h is 2h. 
 
EXERCISE: 
                     Explain why graphs with the given specification do not exist. 
1. full binary tree, nine vertices, five internal vertices. 
2. binary tree, height 4, eighteen terminal vertices. 
 
SOLUTION: 
1.                  Any full binary tree with five internal vertices has six terminal vertices, for a 
total of eleven vertices (according to 2(5) +1=11), not nine vertices in all.  
OR 
As total vertices = 2k+1=9 
         k=4(internal vertices) 
     but given internal vertices=5 ,which is a contradiction. 
     Thus there is no full binary tree with the given properties. 
 
2. Any binary tree of height 4 has at most 24 = 16 terminal vertices.  
Hence, there is no binary tree that has height 4 and eighteen terminal vertices. 
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EXERCISE: 
                     Draw a full binary tree with seven vertices. 
SOLUTION: 
                      Total vertices= 2k + 1 = 7 (by using the above theorem) 

⇒ k = 3 
 
Hence, total number of internal vertices (i.e. a vertex of degree greater than 1)=k=3 
and total number of terminal vertices( i.e. a vertex of degree 1 in a tree) =k+1=3+1=4 
Hence, a full binary tree with seven vertices is 
 

a (root)

b c

d e f g
 

 
 
 
EXERCISE: 
                     Draw a binary tree with height 3 and having seven terminal vertices. 
 
SOLUTION: 
Given height=h=3 
Any binary tree with height 3 has atmost 23=8 terminal vertices. 
But here terminal vertices are 7 
and Internal vertices=k=6 so binary tree exists and is as fellows:  
 

a (root)

bc

d
e

f g

h i j k l m n  
 
REPRESENTATION OF ALGEBRAIC EXPRESSIONS BY BINARY TREES 
 
Binary trees are specially used in computer science to represent algebraic expression with    
Arbitrary nesting of balanced parentheses.  
 

/

a b

Binary tree for a/b  
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The above figure represents the expression a/b. Here the operator (/) is the root and b are 
the left and right children. 

/

a

+

c
d

Binary tree for a/(c+d)  
The second figure represents the expression a/(c+d).Here the operator (/) is the root. 
Here the terminal vertices are variables (here a, c and d), and the internal vertices are 
arithmetic operators (+ and /). 
 
EXERCISE: 
                    Draw a binary tree to represent the following expression 
   a/(b-c.d) 
SOLUTION: 
                     Note that the internal vertices are arithmetic operators, the terminal vertices 
are variables and the operator at each vertex acts on its left and right sub trees in left-right 
order. 
 

a

b

c
d
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Lecture# 45    Spanning Trees 
 
SPANNING TREES: 
Suppose it is required to develop a system of roads between six major cities.  
A survey of the area revealed that only the roads shown in the graph could be constructed. 

a

b

e

f

c

d

 
 
For economic reasons, it is desired to construct the least possible number of roads to 
connect the six cities.  
One such set of roads is 

a

b

f

c

e d

 
 
Note that the subgraph representing these roads is a tree, it is connected & circuit-free (six 
vertices and five edges) 
 
SPANNING TREE: 
A spanning tree for a graph G is a subgraph of G that contains every vertex of G and is a 
tree. 
 
REMARK: 
1. Every connected graph has a spanning tree. 
2. A graph may have more than one spanning trees. 
3. Any two spanning trees for a graph have the same number of edges. 
4. If a graph is a tree, then its only spanning tree is itself. 
 
EXERCISE: 
                     Find a spanning tree for the graph below: 
 

a

b

e

f

c

d
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SOLUTION: 
                     The graph has 6 vertices (a, b, c, d, e, f) & 9 edges so we must delete 9 - 6 + 
1 = 4 edges (as we have studied in lecture 44 that a tree of vertices n has n-1 edges). We 
delete an edge in each cycle. 
1. Delete af 2. Delete fe 
3. Delete be 4. Delete ed 
Note it that we can construct road from vertex  a to b, but can’t go from “a to e”, also 
from “a to d” and from “a to c “, because there is no path available. 
 
 
The associated spanning tree is 

a

b

f

c

e d

 
 
EXERCISE: 
                    Find all the spanning trees of the graph given below. 
 
v0 v1

v3
v2  

 
SOLUTION: 
                      The graph has n = 4 vertices and e = 5 edges. So we must delete 
e - v + 1 = 5 - 4 + 1 = 2 edges from the cycles in the graph to obtain a spanning tree. 
 
(1) Delete v

0
v

1
 & v

1
v

2
 to get 

v0
v1

v3 v2

v0 v1

v3 v2

 
 
(2)      Delete v

0
v

1
 & v

1
v

3
 to get 
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v0 v1

v3 v2  
 
(3) Delete v

0
v

1
 & v

2
v

3
 to get 

 
v0 v1

v3 v2

v0 v1

v3 v2

 
 
 
 
(4)  Delete v

0
v

3
 & v

1
v

2
 to get 

 
v0 v1

v3 v2  
 
(5)  Delete v

0
v3 & v1v3 to get 

 
v0 v1

v3 v2

v0 v1

v3 v2  
 
(6)  Delete v0v

3
 & v

2
v

3
 to get 

 
v0

v1

v3 v2  
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(7) Delete v

1
v

3
 & v

1
v

2
 to get 

 
v0 v1

v3 v2

v0 v1

v3 v2  
 
(8)  Delete v

1
v

3
 & v

2
v

3
 to get 

 
v0 v1

v3 v2  
 
EXERCISE: 
                    Find a spanning tree for each of the following graphs. 
(a)  k1,5   (b) k4 
SOLUTION: 
(a).                 k

1,5
 represents a complete bipartite graph on (1,5) vertices, drawn below: 

 

 
 
Clearly the graph itself is a tree (six vertices and five edges). Hence the graph is itself a 
spanning tree. 
 
(b) k

4
 represents a complete graph on four vertices. 

a b

c d  
Now 
number of vertices = n = 4   and    number of edges = e = 6      
Hence we must remove 
  e - v + 1 = 6 - 4 + 1 = 3 
edges to obtain a spanning tree.             
Let ab, bd & cd edges are removed. The associated spanning tree is 
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a b

c d  
 
 
 
KIRCHHOFF’S THEOREM  
OR MATRIX - TREE THEOREM 
 
Let M be the matrix obtained from the adjacency matrix of a  connected graph G by 
changing all 1’s to -1’s and replacing each diagonal 0 by the degree of the corresponding 
vertex. Then the number of spanning trees of G is equal to the value of any cofactor of M. 
EXAMPLE: 
                    Find the number of spanning trees of the graph G. 
 
a b c

d  
 
SOLUTION: 
                     The adjacency matrix of G is 
 
 
 
 
 
 
 
The matrix specified in Kirchhoff’s theorem is 
 
 
 
 
  
 
 
Now cofactor of the element at (1,1) in M is 
 
 
 
  
 

                 
0 1 0 1
1 0 1 1

( )
0 1 0 1
1 1 1 0

a b c d
a
b

A G
c
d

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

2 1 0 1
1 3 1 1
0 1 2 1
1 1 1 3

M

− −⎡ ⎤
⎢ ⎥− − −⎢ ⎥=
⎢ ⎥− −
⎢ ⎥− − −⎣ ⎦

3 1 1
1 2 1
1 1 3

− −
− −
− −
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Expanding by first row, we get 
 
 
 
 
 
 
 
EXERCISE: 
                     How many non-isomorphic spanning trees does the following simple graph 
has? 

 
SOLUTION: 
                     There are eight spanning tree of the graph 
 

1 2 3 4

5 6 7 8

 
 
Clearly 1 & 6 are isomorphic, and 2, 3, 4, 5, 7, 8 are isomorphic. Hence there are only 
two non-isomorphic spanning trees of the given graph. 
EXERCISE: 
                    Suppose an oil company wants to build a series of pipelines between six 
storage facilities in order to be able to move oil from one storage facility to any of the 
other five. For environmental reasons it is not possible to build a pipeline between some 
pairs of storage facilities. The possible pipelines that can be build are. 
 
a b c

def  
Because the construction of a pipeline is very expensive, construct as few pipelines as 
possible. 
(The company does not mind if oil has to be routed through one or more intermediate 
facilities) 
SOLUTION: 
                     The task is to find a set of edges which together with the incident vertices 
from a connected graph containing all the vertices and having no cycles. This will allow 

2 1 1 1 1 2
3 ( 1) ( 1)

1 3 1 3 1 1
3(6 1) ( 3 1) ( 1)(1 2)
15 4 3 8

− − − −
= − − + −

− − − −

= − + − − + − +
= − − =
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oil to go from any storage facility to any other without unnecessary building costs. Thus, 
a tree containing all the vertices of the graph is to be soughed. One selection of edges is 
 
a b c

def  
DEFINITION: 
                        A WEIGHTED GRAPH is a graph for which each edge has an associated 
real number weight. 
The sum of the weights of all the edges is the total weight of the graph. 
EXAMPLE: 
                    The figure shows a weighted graph 
 

12

3

2
6

3  
with total weight is   2 + 6 + 3 + 2 + 3 + 1 = 17 
MINIMAL SPANNING TREE: 
A minimal spanning tree for a weighted graph is a spanning tree that has the least possible 
total weight compared to all other spanning trees of the graph. 
If G is a weighted graph and e is an edge of G then w(e) denotes the weight of e and w(G) 
denotes the total weight of G. 
EXERCISE: 
Find the three spanning trees of the weighted graph below. Also indicate the minimal 
spanning tree. 

12

3

2
6

3  
SOLUTION: 
 

12

3

2

6

w(T1)=14

T1
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12

3

2

3

w(T2)=11

T2  
 

T3

w(T3)=152

3

1

3

6

 
 
T

2
 is the minimal spanning tree, since it has the minimum weight among the spanning 

trees. 
 
KRUSKAL’S ALGORITHM: 
Input: G [a weighted graph with n vertices] 
Algorithm: 
1. Initialize T(the minimal spanning tree of G) to have all the vertices of G and no edges. 
2. Let E be the set of all edges of G and let m: = 0. 
3. While (m < n - 1) 
3a. Find an edge e in E of least weight. 
3b. Delete e from E. 
3c. If addition of e to the edge set of T does not produce a circuit then add e to the edge 
set of T and set m: = m + 1 
end while 
Output T  
end Algorithm 
 
EXERCISE: 
                    Use Kruskal’s algorithm to find a minimal spanning tree for the graph below. 
Indicate the order in which edges are added to form the tree. 
 

a

b c

d

fg

e

1

7

4

5

3

29

6

8 10

 
 
SOLUTION: 
                     Minimal spanning tree: 
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a

b c

d

fg

e

1
7

4

3

2

6  
 
Order of adding the edges: 
{a, b}, {e, f}, {e, d}, {c, d}, {g, f}, {b, c} 
 
PRIM’S ALGORITHM: 
Input: G[a weighted graph with n vertices] 
Algorithm Body: 
1. Pick a vertex v of G and let T be the graph with one vertex, v, and no edges. 
2. Let V be the set of all vertices of G except v 
3. for i: = 1 to n - 1 
3a. Find an edge e of G such that 
(1) e connects T to one of the vertices in V  and  
(2)e has the least weight of all edges connecting T to a vertex in V. 
Let w be the end point of e that is in V. 
3b. Add e and w to the edge and vertex sets of T and delete w from V. 
 
next i 
Output:  T 
end Algorithm 
 
EXERCISE: 
                    Use Prim’s algorithm starting with vertex a to find a minimal spanning tree 
of the graph below. Indicate the order in which edges are added to form the tree. 
 

a

b c

d

fg

e

1

7

4

5

3

29

6

8 10

 
SOLUTION:  
                      Minimal spanning tree is  
 

a

b c

d

fg

e

1
7

4

3
2

6
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Order of adding the edges:  
{a, b}, {b, c}, {c, d}, {d, e}, {e, f}, {f, g} 
EXERCISE: 
                     Find all minimal spanning trees that can be obtained using 
(a) Kruskal’s algorithm 
(b) Prim’s algorithm starting with vertex a 

a b

d e

9

8
3

c
6

5

5
7

 
SOLUTION: 
Given : 

a b

d e

9

8
3

c
6

5

5
7

 
 
(a) When Kruskal’s algorithm is applied, edges are added in one of the following two 
orders: 
1. {c, d}, {c, e}, {c, b}, {d, a} 
2. {c, d}, {d, e}, {c, b}, {d, a} 
Thus, there are two distinct minimal spanning trees: 
 
a

d

b

c

e

a

d

b

c

e
 

 
 
(b) 

a b

d e

9

8
3

c
6

5

5
7

 
When Prim’s algorithm is applied starting at a, edges are  added in one of the following 
two orders: 
1. {a, d}, {d, c}, {c, e}, {c, b} 
2. {a, d}, {d, c}, {d, e}, {c, b} 
Thus, the two distinct minimal spanning trees are: 
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a

d

b

c

e

a

d

b

c

e

8
3

6

5

8
3

6

5
 

 
 
 
 


